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Abstract— This paper presents a decision rule which allows to
reason with unlabeled samples in the framework of Dempster-
Shafer (DS) theory of evidence. Thanks to the power of this
theoretical framework to represent different kinds of knowledge
(from total ignorance to full knowledge), we propose an extension
of a so-called evidential classifier which allows to process learning
sets whose labeling has been specified with belief functions. This
kind of functions can encode partial knowledge on examples
of the learning set. In this context, using unlabeled examples
can significantly improve the performance of the classifier. In
addition, the proposed methodology constitutes by this way a
convergence point between supervised and unsupervised learning.

I. INTRODUCTION

In supervised learning, the classification problem consists
in assigning an input pattern x to a class, given a learning
set L composed of n patterns xi with known classification.
Each pattern in L is represented by a feature vector xi and its
corresponding class label ωi. However, in many applications,
a lot of unlabeled data can be available while labeled instances
are scarse. This is due to the fact that they may be difficult
or impossible to obtain under given circumstances or require
expensive expert knowledge. Solutions to handle this kind of
information have been proposed by several authors [1], [2], [3],
[4]. In addition, the learning set can be composed of examples
whose class is not precisely known. Instead the knowledge of
ωi, the expert gives a subset of classes which should include
the correct solution. This information sometimes describes
more precisely the true state of knowledge and is generally
denoted partial labeling. A solution to this problem has been
proposed in the probabilistic framework [5].

In order to take into account this kind of labeling (partial
labels and unlabeled instances), several solutions based on
the Dempster-Shafer (DS) theory of evidence [6], have been
proposed [7], [8]. Partial labeling has been investigated in the
framework of Dempster-Shafer theory because this last enables
to reason on beliefs expressed on subsets of Ω. Advantages of
these techniques are numerous including the description of
the uncertainty on the prediction, the possibility of rejecting a
pattern and detecting unknown class, ... More recently, several
decision tree induction methods based on belief functions [9],
[8] have been introduced, giving rise to the notion of Belief
Decision Tree (BDT). Thanks to the greater flexibility of
DS theory to represent different kinds of knowledge (from
total ignorance to full knowledge), BDT’s allow to process
training sets whose labeling has been specified with belief
functions [10]. Semi supervised learning is a special case of

partial labeled problem where all examples are either precisely
labeled or unlabeled i.e. with labels belonging to Ω. However,
unlabeled examples have not been explicitly used to improve
the performance of the decision rule.

In this paper, we propose a decision rule which can cope
with training sets whose labelling is not precisely known and
consider the potential role of unlabeled data in supervised
learning. We present an algorithm based on belief functions
theory and experimental results demonstrating that unlabeled
data can significantly improve learning accuracy in certain
practical problems. This paper is organized as follows. The
basic concepts of belief function theory are first briefly intro-
duced, including the way to handle uncertain labels with belief
functions (Section II). The methodology and the proposition
to evaluate the classifier in this context are described in
Section III. Finally, Section IV presents some experimental
results.

II. BACKGROUND

In this section, several concepts of the DS theory of ev-
idence [6] are recalled, which allows to introduce uncertain
labeling and notations used in this paper. Let Ω = {ωq, q =
1, · · · , Q} denote a finite set, generally called the frame of
discernment. In pattern classification, Ω is the set of Q classes
to be recognize. A basic belief assignment (bba) m on Ω is
defined1 as a function from 2Ω to [0, 1] verifying m(∅) = 0 and∑

A⊆Ω
m(A) = 1. Each subset A ⊆ Ω such as m(A) > 0 is

called a focal element of m. From this, a communality function
q is defined as q(A) =

∑
B⊇A m(B). Note that functions m

and q are in one-to-one correspondence [6], and can be seen
as two facets of the same piece of information. Functions q are
generally used for combination of several pieces of evidence.

A. Uncertain labeling

This paper focuses on learning from partially labeled data
in the framework of belief function theory. In this context, the
available learning set can be written of the form:

L = {(xi,mi), i = 1, · · · , n}, (1)

where mi is a bba defined on Ω and represents the knowledge
on the label of the ith example2. This belief function can

1The notation mΩ[data] is generally used to denote a bba defined on the
domain Ω based on observed [data].

2For the sake of simplicity and because all belief functions used in this
paper are defined on the same frame Ω, the superscript is forget in the sequel.



A ⊆ Ω HL IL PrL PoL
{ω1} 0 0 0.2 0
{ω2} 1 0 0.6 0

{ω1, ω2} 0 1 0 0
{ω3} 0 0 0.2 0.7

{ω1, ω3} 0 0 0 0.2
{ω2, ω3} 0 0 0 0

Ω 0 0 0 0.1

TABLE I

EXAMPLE OF UNCERTAIN LABELING WITH BELIEF FUNCTIONS

represent different forms of label including of course hard
labels (HL), probabilistic labels (PrL), possibilistic (PoL)
labels or imprecise labels (IL). Table I illustrates an example
of these evidential labels on a three-class frame. Note that a
possibility measure is known to be formally equivalent to a
consonant belief function, i.e., a belief function with nested
focal elements [7]. Unlabeled samples can be encoded using
the vacuous belief function mv defined as mv(Ω) = 1.

B. Operations on belief functions

An α-discounted bba mα can be obtained from an original
bba m as follows:

mα(A) = αm(A) ∀ A ⊆ Ω, A 6= Ω (2)

mα(Ω) = 1 − α + αm(Ω) (3)

with 0 ≤ α ≤ 1. The discounting operation is useful when the
source of information from which m has been derived is not
fully reliable, in which case coefficient α represents some form
of metaknowledge about the source reliability, which could not
be encoded in m.

Two pieces of evidence m1 and m2 can be aggregated
with the Dempster’s rule of combination (orthogonal sum ⊕),
yielding to an unique belief function m defined as:

m(A) =

∑
B∩C=A m1(B)m2(C)∑
B∩C 6=∅ m1(B)m2(C)

∀A ⊆ Ω. (4)

The use of this rule is possible only if m1 and m2 are not
totally conflicting, i.e., if there exists two focal elements B and
C of m1 and m2 satisfying B ∩ C 6= ∅. Note that combining
a belief function m with the vacuous belief function mv leads
to the same belief function m. The conjunctive combination of
these two pieces of evidence (m = m1∩m2) can be computed
from q1 and q2 as:

q(A) = q1(A)q2(A) ∀ A ⊆ Ω. (5)

This rule is sometimes referred to as the (unnormalized)
Dempster’s rule of combination.

Based on rationality arguments developed in the TBM
(Transferable Belief Model), Smets [11] proposes to transform
m into a probability function pm on Ω (called the pignistic
probability function) defined for all ωq ∈ Ω as:

pm(ωq) =
∑

A3ωq

m(A)

|A| (6)

where |A| denotes the cardinality of A ⊆ Ω. In this transfor-
mation, the mass of belief m(A) is distributed equally among
the elements of A. This pignistic probability function is used
in the TBM for decision making.

III. METHODS

A. Problem

Let us suppose that the learning set L is composed of a
partial labeled set defined as P = {(xp,mp), p = 1, · · · , P}
and the unlabeled set U = {(xu,mv), u = 1, · · · , U} with mv

the vacuous belief function. The availability of this unlabeled
data set poses the challenge of how to use them in order
to improve generalization in semi-supervised learning. In this
paper, the idea consists in re-labeling the set U in order to
improve the performance of the algorithm learnt on the whole
set L. We then need an algorithm which can estimate an output
bba based on the partial labeled set P . Such a decision rule is
proposed in [7] and briefly introduced in the next section. In
this paper, this extension of the k nearest neighbors algorithm
is used for simulations but another kind of classifier, generally
denoted evidential classifier, has been proposed by several
authors [8], [10] and can be used in this context.

B. Distance-based Method

In the method introduced by Denœux [12], a basic belief
assignment is constructed directly, using as a source of infor-
mation the training patterns xi situated in the neighborhood
of the pattern x to be classified. If the k nearest neighbors
(according to some distance measure) are considered, we
thus obtain k bba’s that are combined using the Dempster’s
rule of combination. The initial method was later refined to
allow parameter optimization [13], and a neural-network-like
version was recently proposed [14]. Finally, a generalization
to imprecise labelling has been proposed in [7]. Each neighbor
can be viewed as a piece of evidence that influences the
belief concerning the membership class of x according to
a discounting coefficient. A belief function mi associated to
each neighbor i is then defined as:

mx[xi](A) = φ(di)mi(A) ∀ A ⊆ Ω, A 6= Ω (7)

mx[xi](Ω) = 1 −
∑

A⊂Ω

mx[xi](A) (8)

where di is the Euclidean distance between x and xi and φ(.)
is a decreasing function defined as φ(di) = exp[−γ(di)

2] with
γ a positive parameter. The k belief functions mx[xi](.) for the
k nearest neighbors are then aggregated using the Dempster’s
rule of combination:

m̂x =
k⊕

i=1

mx[xi]. (9)

In this method, an unlabeled sample xi (an example with
unknown classification mi = mv) has no influence of m̂x.
In other terms, learning the algorithm on the set L leads to
consider only neighbors with known classification.



C. Use unlabeled samples

Using the learning set P , we first build a decision rule
using the distance-based method previously presented. Having
observed P , the algorithm is then used to estimate output
belief functions on the unlabeled data set U . Let us denote
m̂U [P] these belief functions estimated on all instances of
U . By this way, all learning examples containing in L have
been labeled and can be used to build the classifier on the
final learning set. This available data set is of the form
P = {(xp,mp), p = 1, · · · , P} and the re-labeled set U =
{(xu, m̂U [P]), u = 1, · · · , U}. Note that it is possible to use
different algorithms to build the first decision rule and the final
classifier. For example, we can build the first decision rule used
to estimate output belief functions on unlabeled data with the
method presented in the section III-B and used a BDT for the
final classifier.

D. Evaluation

Performance assessment is an important issue in the design
of a classifier. In a decision-theoretic setting, this problem
is formalized by considering a set of actions A, and a loss
function L : A×Ω 7→ R, where L(α, ω) is the loss incurred if
one selects action α and the true state of nature is ω. Typically,
each action in A corresponds to the choice of a class, and the
loss is one for misclassification, and 0 for correct classification.
The performance of a classifier c : R

d 7→ A can then be
measured by taking the expectation of L(c(x), ω) over both
x and ω. This expectation is usually estimated by a sample
average over test data. In our case, this framework needs to
be extended in two directions:

• the output of an evidential classifier is a belief function:
the set of actions is thus a set of belief functions; we
then need to define the loss associated to an output bba
m̂ when the true state of nature is ω;

• the test set may be of the form defined in (1), i.e., the
class of test pattern may be only partially known.

A first solution was proposed in [7], [9]. This solution postu-
lates the following loss function:

L(m̂,m) = 1 −
∑

A⊆Ω

m(A)pm̂(A) (10)

where m̂ is the output bba produced by the classifier, and m
is a bba that quantifies the uncertainty concerning the true
state of nature ω. A nice property of this loss function is that,
when m(Ω) = 1, L(m̂,m) = 0 whatever m̂, which seems
reasonable. Deeper understanding of this loss function can be
gained by observing that:

L(m̂,m) = 1 −
∑

A⊆Ω

m(A)
∑

B⊆Ω

m̂(B)
|B ∩ A|
|B|

= 1 −
∑

A,B⊆Ω

m(A)m̂(B)Incl(B,A)

where Incl(B,A) = |B ∩A|/|B| is the degree of inclusion of
B in A. An alternative form of L(m̂,m) is given by

L(m̂,m) = 1 −
∑

A⊆Ω

m(A)
∑

ω∈A

pm̂(ω) (11)

= 1 −
∑

ω∈Ω

pm̂(ω)
∑

A3ω

m(A) (12)

= 1 −
∑

ω∈Ω

pm̂(ω)q({ω}) . (13)

We can therefore propose a criterion to evaluate the perfor-
mance of a classifier on a test set of n′ examples (xi,mi),
i = 1, . . . , n′:

C1 = 1 − 1

n′

n′∑

i=1

∑

ω∈Ω

pm̂i
(ω)qi({ω}) (14)

where qi is the commonality function associated to mi, and
m̂i is the output bba for example i. This kind of cost function
can be used to optimize parameters of the evidential classifier.

IV. RESULTS

In this section, we present several simulations in order to
illustrate the performance of the proposed methodology.

A. Synthetic data

Let us first consider a simple two-class problem in which
the training set is composed of only four patterns in a one-
dimensional space with x1 = 0, x2 = 0.5, x3 = 2 and x4 = 3.
Let us suppose that the two first samples belong to class ω1

while the other ones belong to class ω2 but the second example
x2 has not been labeled by the expert. To illustrate the above
classification procedure, we compare the pignistic probabilities
obtained in learning the algorithm with the unlabeled sample
itself m2(Ω) = 1, learning the algorithm with the true class
m2({ω1}) = 1 and finally learning the algorithm with the re-
labeled sample. The distance-based method presented in the
section III-B is both used to label the second example and
for the final decision rule. Figure 1 illustrates these pignistic
probabilities associated to each of the two classes. In this
problem, we can note that the pignistic probabilities obtained
using the proposed algorithm tend to the true probability (i.e.,
when the algorithm is learnt with the true class). This result
clearly shows that the methodology presented in this paper can
give a more precise idea of the data distribution.

B. Synthetic 3-class problem

For this simulation, a learning set L was generated using 3
classes containing 50 bidimensional vectors each. Each vector
x from class q was generated by first drawing a vector z from
a Gaussian f(z|ωq) ∼ N (µq,Σq), and applying a non linear
transformation z 7→ x = exp(0.3 z) to obtain non-Gaussian
data. The means of the 3 Gaussian distributions were taken
as: µ1 = (−1,−1)′, µ2 = (1, 2)′, µ3 = (−1.5, 2)′ and the
variance matrices were of the form Σq = DqAD′

q with

A =

( √
3 0

0
√

3/3

)
Dq =

(
cos θq − sin θq

sin θq cos θq

)



−2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pignistic probability for class ω
1

Unlabeled
True class
Re−labelled

−2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pignistic probability for class ω
2

Unlabeled
True class
Re−labelled

Fig. 1. Pignistic probabilities of class ω1 and ω2 for the three methods (∗
= learning vectors)

and θ1 = π/3, θ2 = π/2, θ3 = −π/3. We need to compare
the performance of three classifiers : a classifier learnt with
all labeled samples, a classifier learnt with 100 unlabeled
samples and finally a classifier learnt using the re-labeled
data. To compare the performances of the 3 methods, a test
set T was generated using the same distribution as L with
15, 000 samples. The results are given in table II. According
to the mean errors rates and respective standard deviations,
it is obvious to note that the proposed methodology can
significantly improve the performance of the classifier learnt
with re-labeled samples.

C. Increasing the number of unlabeled data

Another simulation is used to evaluate the performance
of the classification rule. The goal is to demonstrate that
supervised learning can be improved using unlabeled samples.

Error All labeled Unlabeled Re-labeled
Mean 0.112 0.279 0.146

Sd 0.011 0.029 0.036

TABLE II

MEAN ERROR RATES AND STANDARD DEVIATIONS FOR THE 3 METHODS
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Fig. 2. Error rate vs. missing labels rate

For this simulation, a learning set L was generated using 2
classes containing 100 bidimensional vectors each drawing
with Gaussian distributions. Missing labels are randomly cho-
sen in the learning set. To estimate the generalization perfor-
mances, a test set was generated using the same distributions
as L with 5, 000 samples. The experiment was repeated ten
times with independent training sets. The criterion presented in
the equation (14) is used for optimizing the parameters of the
classifier while number of neighbors is adjusted using a cross-
validation set. Figure 2 shows the misclassification error rate
vs. the missing labels rate. It is obvious to see that the proposed
decision rule obtains better performance than the rule learnt on
unlabeled examples. In fact, if we consider unlabeled samples
in the learning set L, the number of neighbors (with known
classification) used to estimate the output bba m̂L[L] tends
to decrease. For example, with 50% of missing labels in the
learning set, the probability to observe k neighbors with know
classification is divided by 2. Consequently, this increases the
uncertainty on the prediction and damages the performance
of the classification procedure. On the contrary, using the re-
labeled data leads to stabilize the misclassification error rate.

V. CONCLUSION

This paper has focused on pattern recognition techniques
based on the Dempster-Shafer theory of evidence. In this
context, a classification procedure has been proposed to cope
with partial labeling and unlabeled samples. An extension of
evidential classifiers which allows to process learning sets
whose labeling has been specified with belief functions has



been presented. The idea consists in substituting unlabeled data
with predictions estimated from a first decision rule learnt on
labeled data. The proposed methodology can be extended to
other algorithms where uncertain labels are handled. Unlabeled
samples have been used to improve the performance of the
decision rule which can be used in many applications of semi-
supervised learning where an abundance of unlabeled data
is available. Finally, the proposed methodology constitutes
a convergence point between supervised and unsupervised
learning. Future work concerns a validation of the method
on a real-world application. Using the proposed methodology
as a way of exploiting unlabeled data in Content Based
Image Retrieval can offer some interesting insights. In such
applications, the major difficulty for learning during relevance
feedback is the relatively small numbers of labeled training
samples available from the user.
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