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Abstract— This paper presents and compares several ev-
idential classifiers, i.e., classification rules based on the
Dempster-Shafer theory of evidence. Three methods used
in the majority of applications are compared, with empha-
sis on the techniques used to build belief functions from
learning data. The methods are: the consonant method
initially introduced by Shafer in the more general context
of statistical inference, Appriou’s separable method, and
the distance-based classifier introduced by Denceux. These
models can be derived with two decisions rules, based on
the minimization of, respectively, lower and pignistic ex-
pected loss. Simulations on synthetic data demonstrate the
performance of these techniques and allow to compare the
behavior of the proposed models.

Keywords— Classification, Dempster-Shafer theory, evi-
dence theory, belief functions.

I. INTRODUCTION

The classification problem consists in assigning an input
pattern x to a class, given a learning set £ composed of
n patterns x* with known classification. Each pattern in
L is represented by a p-dimensional feature vector x? and
its corresponding class label w’. In the last ten years, sev-
eral solutions to this problem have been proposed, based
on the Dempster-Shafer (DS) theory of evidence [1], [2].
Advantages of these techniques (description of the uncer-
tainty on the prediction, possibility of rejecting a pattern
and detecting unknown class) have been demonstrated in
numerous papers [3], [4]. In particular, these classifiers
are well adapted to applications where the available data
come from multiple imperfect information sources (mul-
tisensor problems, environmental monitoring, medical di-
agnosis, classifier combination). The aim of this paper is
to present three of the most cited models: two likelihood-
based (LB) methods (the original method presented in the
Shafer’s book [1] and the “separable” method introduced
by Appriou [3]), and a distance-based (DB) method intro-
duced by Denceux [5]. These techniques differ by the way
in which belief functions are assessed from data. An in-
dependent problem concerns the way decisions are made,
given a belief function and decision costs; two common ap-
proaches to this problem are considered, leading to a total
of 6 classification schemes. The paper is organized as fol-
lows. The basic concepts of evidence theory are first briefly
introduced (Section II), and the three analyzed models are
described in Section III. Finally, Section IV gives some ex-
perimental results using synthetic data. These simulations
allow to understand the differences between the three pro-
posed models in terms of behavior and classification per-
formances.

II. BACKGROUND

In this section, several concepts of the DS theory of evi-
dence [1] are recalled, which allows to introduce notations
used in this paper. Let Q@ = {w;,¢ = 1,---,Q} denote
a finite set of possible values for a variable y of inter-
est. A basic belief assignment (bba) m on  is defined
as a function from 2% to [0, 1] verifying m () = 0 and
> acqm(A) = 1. Each subset A C Q such as m(A) > 0is
called a focal element of m. From this, a belief function bel
and a plausibility function pl are defined, respectively, as
bel(A) = 3. pcam(B) and pl(A) = ZAOB;&@ m(B). The
quantity bel(A) can be interpreted as a measure of one’s
belief that hypothesis A is true. The plausibility pl(A) can
be viewed as the total amount of belief that could be po-
tentially placed in A. Note that functions m, bel and pl are
in one-to-one correspondence [1], and can be seen as three
facets of the same piece of information. An a-discounted
bba m,(.) can be obtained from the original bba m as
follows:

mq(4) =
me() =

am(A) VACQA#Q (1)
1—a+am(Q) (2)

with 0 < a < 1. The discounting operation is useful when
the source of information from which m has been derived
is not fully reliable, in which case coefficient a represents
some form of metaknowledge about the source reliability,
which could not be encoded in m. Two pieces of evidence
m1 and msy can be aggregated with the Dempster’s rule
of combination (orthogonal sum @), yielding to a unique
belief function m defined as:

m _ > Brc—am1(B)my(C)
) = 5 preso 1 (B)ma(C)

Under the assumption of normality of the bba’s (m(f)) =
0), the use of this rule is possible only if 7, and ms are not
totally conflicting, i.e., if there exist two focal elements B
and C of my and my satisfying BN C # . If it is not the
case, solutions exists, such as abandoning the normality
assumption, or using other combination rules [6].

Let us assume that we have a bba m on 2 summarizing
one’s beliefs concerning the value of the unknown variable
y, and we have to choose an action among a finite set of
actions 4. A loss function A : A x 2 — R is also assumed
to be given, such that A(a,w) denotes the loss incurred
if one chooses action ¢ and y = w. Which action should
we choose ? Based on rationality arguments, Smets [2]
proposes to transform m into a probability function p,, on
Q (called the pignistic probability function) defined for all

VACQ.  (3)



w € Qas: pr(w) = D 45, %, where |A| denotes the

cardinality of A C Q. In this transformation, the mass
of belief m(A) is distributed equally among the elements
of A. Based on this probability, we can associate to each
a € A a risk, defined as the expected loss (relative to py,)
if one chooses action a:

R(a) = 3 Ma,w)pm (). (4)

wEeN

We then choose the action with the lowest risk. Al-
ternatively, the decision process could be based on non-
probabilistic extensions of the concept of mathematical ex-
pectation [7]. For example, the concept of lower expecta-
tion leads to the definition of the lower expected loss as

R.(a) =) m(4) min A(a, w), (5)

ACO we

which results in a different decision strategy.

In pattern classification, Q = {w,...,wq} is the set of
classes, and the elements of A are, typically, the actions q,
of assigning the unknown pattern to each class w,. With 0-
1 losses, defined as A(aq, wr) = 1—d4,» for ¢,r € {1,...,Q},
it can be shown [7] that the minimization of the pignistic
risk R leads to choosing the class wy with maximum pig-
nistic probability, whereas the minimization of R, leads to
choosing the class w, with maximum plausibility. If an ad-
ditional rejection action ag with constant loss \g is added,
then the pattern is rejected if p,,(wo) < 1 — Ao using the
first rule, and if pl(w.) < 1 — Ao using the second rule [7].

III. METHODS

As remarked in [8], there are two main approaches for
building belief functions in classification problems: the LB
approach relying on density estimation, and the DB ap-
proach in which a bba is directly constructed from the dis-
tances to reference pattens. These approaches are briefly
described in the sequel.

A. Likelihood-based Methods

Let us assume the class-conditional probability densi-
ties f(x|wq) to be known. Having observed x, the likeli-
hood function is a function from € to [0,400) defined as
L(wg|x) = f(x|wq), for all ¢ € {1,...,Q}. Shafer [1, p.238]
proposed to derive from L a belief function on 2 defined
by its plausibility function as:

max,, e a[L(w,g]x)]

pl(A) = VA C Q. (6)

max[L(w,|x)]

In pattern recognition, an application of this method (and
a variant thereof) can be found in Ref. [9]. Note that
pl defined by (6) is consonant, i.e., its focal elements are
nested. For that reason, this first model will be called the
“consonant likelihood-based” (CLB) model.

Starting from axiomatic requirements, Appriou [3] pro-
posed another method based on the construction of ) be-
lief functions my(.). The idea consists in taking into ac-
count separately each class and evaluating the degree of

belief given to each of them. In this case, the focal el-
ements of each bba m, are the singleton {w,}, its com-
plement &,, and . Appriou actually obtained two differ-
ent models with similar performances [10]. According to
Appriou (personnal communication), one of these models
seems to be preferable on theoretical grounds, because it is
consistent with the generalized Bayes theorem introduced
by Smets [6]. This model, hereafter referred to as the Sep-
arable Likelihood-based (SLB) method, has the following
expression:

my({wg}) = 0 (7)
my(@g) = ag(l = R.L(w,|x)) (8)
my(Q) = 1-a,(1 = R.L(w,lx)), (9)

where o, is a coefficient that can be used to model ex-
ternal information such as sensor reliability, and R is a
normalizing constant that can take any value in the range
(0, (max,(L(w,y|x)))"!]. Parameter R is somewhat arbi-
trary, but the principle of maximum uncertainty leads to
choosing the largest allowed value, which results in the
least specific bba. With these @ belief functions and using
the Demspter’s rule of combination, a unique belief func-
tion m is obtained as m = @, m,.

B. Distance-based Method

A totally different approach was introduced by Denoeux
[5]. In this method, a bba is constructed directly, using as
a source of information the training patterns x! situated
in the neighborhood of the pattern x to be classified. If
the k nearest neighbors (according to some distance mea-
sure) are considered, we thus obtain k bba’s that are com-
bined using the Dempster’s rule of combination. The initial
method was later refined to allow parameter optimization
[11], and a neural-network-like version was recently pro-
posed [4]. This version, which will be considered here,
uses a set of prototypes that are determined to minimize
an error function. Each prototype can be viewed as a piece
of evidence that influences the belief concerning the mem-
bership class of x. A belief function m’ associated to each
prototype i is then defined for all ¢ € {1,--- , @} as:

mi({wd) = aigi(@) (10)
mi(Q) = 1-al¢i(d) (11)
mi(Ad) = 0VAe22\ {{w,}.Q} (12)

where d is the Euclidean distance to the i-th prototype,
o' is a parameter attached to prototype i, and ¢'(.) is
a decreasing function defined as ¢'(d’) = exp[—vi(d?)?].
In this expression, 7' is a positive parameter associated to
prototype i. The belief functions m’ for each prototype are

then aggregated using the Dempster’s rule of combination.

C. Parameter optimization

In the application of the LB methods, the first difficulty
concerns the estimation of likelihood functions. Several
density estimation can be used, including parametric meth-
ods based, e.g., on a Gaussian model, and non parametric



kernel methods. In the simulations presented in the sequel,
we chose to use a Gaussian mixture model together with
the EM algorithm as an estimation technique [12].

As remarked by Bastiére [8], there is no general tech-
nique for evaluating the discounting coefficients o, in the
separable method. In this paper, we propose to use the
same approach as used by Denoeux [4] for the DB method,
i.e., minimizing the following error criterion:

n Q
E(a) =YY (p'(wg) —uj)’

i=1 g=1

(13)

where ufl is the class indicator of pattern x! (ufl =1if

w? = w,), and p’(w,) is the pignistic probability of w, for
vector x'. In the same manner, it is possible to define an
error criterion based on the plausiblity function FE, where p
is replaced with pl. These different techniques associated
to the two decision rules presented in the Section 2 are

demonstrated in the sequel.

IV. RESULTS

For the following simulations, a learning set £ was gen-
erated using 3 classes containing 50 bidimensional vectors
each. Each vector x from class ¢ was generated by first
drawing a vector z from a Gaussian f(z|wq) ~ N (uq, Xq),
and applying a non linear transformation z — x =
exp(0.3 z) to obtain non-Gaussian data. The means of the
3 Gaussian distributions were taken as: u; = (—1,—1)',
u2 = (1,2)", pus = (—1.5,2)" and the variance matrices
were of the form ¥, = D, AD; with

V3 0 cos 6
A= D, = NS
< 0 3/3 1 siné,

and01 :7T/3,02:7T/2,03:—7T/3.

—sinf,
cosf,

A. Decision regions

The decision regions for the CLB and DB methods, with
the two decision rules are shown in Figures 1 and 2 (the de-
cision regions for the SLB method are somewhat similar to
those of the CLB method, and are consequently not shown
here for lack of space). In these figures, mixture compo-
nent centers and prototypes are represented as asterisks
(). For the LB methods, likelihood functions were esti-
mated using a Gaussian mixture model with & = 2 modes
per class, and the parameters were estimated by the EM al-
gorithm [12]. For the DB method, we chose by analogy two
prototypes per class whose locations were initialized using
the c-means algorithm. Concerning the separable method,
parameters o, were fixed at the following values: oy = 0.4,
asy = az = 0.9. The value of the rejection cost Ay was set
at 0.4. The specific form of the belief functions for the
CLB and SLB methods impose that max, pl({w,}) = 1.
For this reason, only the DB method allows to reject pat-
terns using the maximum plausibility decision rule. As can
be seen from these figures, both the inference method and
the decision rule have a dramatic influence on the shape of
the decision regions.
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Fig. 1. Decision regions for the CLB Method (Shafer) with R (up)
and R. (down) for rejection loss A\g = 0.4, (w1 = X, wy = o,
w3 = +)

Denoeux - Decision regions with Rbet
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Fig. 2. Decision regions for the DB Method (Denceux) with R (up)
and R« (down) for rejection loss A\g = 0.4, (w1 = X, w2 = o,
w3 =+)
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Fig. 3. Test error rate vs. rejection rate for the three methods with
the two decision rules without (up) and with outliers (down)

B. Performance comparison

To compare the performances of the 3 models, a test
set T was generated using the same distribution as £ with
15,000 samples. The experiment was repeated ten times
with independent training sets. The number of compo-
nents in the mixture model (for the LB methods) and the
number of prototypes (for the DB method) were optimized
using a cross-validation set. The upper part of Fig. 3 shows
the error rate vs. the reject rate for the 3 methods and the
2 decision rules. For the CLB and SLB methods associated
to the maximum plausibility decision rule, there are no re-
jected patterns. For this data set, all the proposed models
obtain comparable performances. However, the DB model
yields lower error rates as compared to the LB model with-
out rejection. Moreover, if the classes have different prior
probabilities, this gain is further increased.

To demonstrate the robustness of these methods, the
test set 7 was then contaminated with 1,500 outliers with
uniform distribution and random class labels. The lower
part of Fig. 3 presents the error rates of the different meth-
ods as functions of the rejection rates. The most robust
decision rule seems to be the DB method with the maxi-
mum pignistic probability rule. This observation is easily
explained by the shapes of the decision regions.

V. CONCLUSION

This paper has focused on pattern recognition tech-
niques based on the DS theory of evidence. Three models
and two decision rules have been presented and discussed,

and a method for evaluating parameters (discounting co-
efficients) of the LB models has been introduced. From
experimental results, we can draw several conclusions:
e The output belief functions take very different forms
from the 3 methods studied (more or less specific, conso-
nant or not); consequently, the uncertainty related to the
prediction is not represented in the same manner by the 3
models.
o All the proposed models (except LB methods with the
maximum plausibility decision rule) obtain comparable
performances in the case of “standard” data; however, the
DB method associated to pignistic risk minimization seems
to be more robust to outliers than the other methods.
Although these conclusions cannot be blindly general-
ized to all classification tasks, they seem to be sufficiently
explicit to guide the choice of a model. An important re-
mark concerns the application of such techniques to multi-
sensor data fusion (military applications for example). In
such applications, each sensor is considered as an indepen-
dent source of information. The three proposed techniques
can be applied by considering separately each sensor (asso-
ciated with a confidence coefficient) and combining the in-
formation with the Dempster’s rule of combination. As far
as we know, only the DB method can cope with a learning
set composed of samples with partially known labels [13].
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