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Abstract — This paper analyses and evaluates two projection
families and describes their integration in a multi target tracker
expected to be used in a real world experimentation. The
knowledge of the road network allows for more reliable track
maintenance and accurate state estimation, compared to
standard trackers, when targets are closely spaced and
undertake manoeuvres. The methods to be studied are the
orthogonal projection, and the probabilistic projection, which
are applied to the state estimate. The tracker's estimator uses
directional dynamic models corresponding to the roads of
interest. The use of competing non-interacting models instead of
the interacting multiple model (IMM) method is explained and
Jjustified in the context of road targets. The multimodel estimator
computes costs, transmitted to an S-dimensional assignment
algorithm which determines the best measurement-to-track
association. Simulation results show the effectiveness of each
projection method on the overall tracking precision, in specific
road network and sensor configurations.

Keywords: Tracking, Ground target, Variable Structure
Multiple Model (VSMM) estimator, S-Dimensional Assignment
problem.

1 Introduction

This work focuses on a typical multisensor ground
surveillance application for which the EADS company is
currently developing several data fusion algorithms.
Representative tactical scenarios include on-road civil
vehicles, convoys of tanks, other off-road capable
vehicles, as well as low altitude airborne targets. The
ground target tracker that is described here is designed to
process consecutive distinct incoming scans from one or
more Moving Target Indicator (MTI) radars. Although
this algorithm is to be used to produce a tactical ground
picture needed by the commanders, this paper
concentrates on the tracking of individual targets that are
bound to the road network, with the goal of evaluating the
effectiveness of the projection functions, and the influence
of each of them on the overall tracking precision.

Sec. 2 describes the general architecture of the S-
Dimensional Assignment Variable Structure Multiple
Model (later called S-D VS-MM) tracker, particularly
indicating the interaction of both the estimator and the
association modules.
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Sec. 3 presents the theoretical basis, and the expected
influence of the two internal state projection methods that
were implemented in the tracker's estimator.

Sec. 4 details the design of the estimator, that was adapted
from [11], and that includes the projection modules.

In Sec. 5, we examine the estimation errors obtained using
each of the deterministic and probabilistic projections
with a target moving on a single straight road segment
(Sec.5.1). These simulations point out the best line of
sight versus road orientation configurations where the
highest estimator precision is expected. Next in Sec.5.2,
the simulation of a standard Kalman filter with different
orientations of the measurement error covariance matrix
[R], and representative simulation parameters, shows the
different geometrical configurations of the filtered state
covariance matrix [P(k+1lk+1)] relative to the projection
road segment. This allows the interpretation of the
estimation errors obtained with the multi target tracker in
Sec.5.3 using a real road network.

2 Global tracker architecture

Figure 1 presents the high level structure of the kinematic
tracker. The incoming measurements first undergo a
systematic alignment which brings them under Cartesian
coordinates. Generally, such an alignment module is
convenient to convert measurements from dissimilar
sensors into a common coordinate system.

The measurements are received in the form of plots
belonging to scans, from one or several MTI radars. We
assume that the scans are processed in chronological order
and never overlap in the time domain, ie: the last
measurement of a scan is older than the first measurement
of the following scan.

The tracks are managed in two different ways depending
on their status: the confirmed tracks are updated using the
incoming measurements by the multidimensional
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Figure 1: Architecture of the ground target kinematic
tracker
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assignment, whereas the tentative tracks are updated in a
separate function, by those measurements that couldn't be
associated to any confirmed track. The confirmed track
updating can be seen as a two stage process involving the
estimation level, and the assignment level. The estimator
computes the track predictions along the roads,
determines the feasible measurement-to-track
assignments, and updates the track's state on the road
network. This updating consists in filtering the predicted
state using the assigned measurement before projecting
the filtered state on a defined road segment. The estimator
operates on each feasible assignment, making no
assignment decision. It just computes each assignment
cost that informs the assignment module which, in turn,
decides which assignment is best, on the multi scan sliding
decision window. Finally, when the assignment module
has found the best existing association between the list of
existing tracks, and the measurements in the S-1 following
scans, a hard decision keeps the assignment's decision for
the first scan only. After this new track update, the sliding
S-1 scan decision window moves to the next scan. A
detailed presentation of the 2-D and S-D Assignment
operations can be found in reference [11].

3  Projection function
definitions, and benefits

principles,

The road prior information is used in both the prediction,
and projection stages of the above introduced estimator.
The projection function can be used only when it is
assumed that the target of interest is on-road. In
algorithms that can track targets capable of on-road and
off-road behaviors, it is necessary to have an opinion on
the track's road status in order to correctly apply the
projection module. The simulations used in this work
assume that all targets are on-road.

Knowing that the MTI radar produces noisy
measurements, and that the orientation of its line of sight

relative to the roads of interest can vary, the filtered state
is always off-road, and the associated covariance matrix
doesn't generally reflect the road orientation. The
projection algorithms are used to correct the estimated
state as well as its associated covariance, according to the
segment believed to include the target.
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Some work on projection methods applied to ground
target tracking already exists. The deterministic approach
was used to orthogonally project the incoming
measurement z.(k) itself [6]. This method computes a
projected target observation z,(k) belonging to the road
segment s, whose Euclidean distance to the incoming
measurement is minimal. Thus

Measurement under constraint

z.(k)-7|, M

zZ, (k)= argmin

A second probabilistic approach is described in [5], and
uses the measurement error distribution [R.(k)] to obtain
the most probable target observation z,,(k) belonging to
the road network. This position maximizes the a
posteriori probability p(zl z.(k), [R.(k)]) under the road
segment constraint. Thus

Zpp (k) =arg min”Z 2 (km[kc I 2

ZES

The analytical expressions for z,(k), and z,,(k) are given
in [1]. However, we preferred to project the target's
filtered state rather than the observation itself for several
reasons. First an erroneous measurement projection alters
future track prediction, and can lead to track loss. Second,
the systematic projection of the measurement does not
allow to generalize the tracking algorithm to targets that
can exit the road network, and whose detections do not
necessarily belong to the road. This is why only the
internal state projection described below was further
considered and implemented.

3.2 Estimated state under road constraint

To comply with the assumption that the target's speed
estimate is in the road direction, and that its position
estimate belongs to the same road segment s, it is possible
to process the updated target's state instead of projecting
the measurement. Such techniques for projecting the
internal state were presented in several target tracking
applications [7]-[9], however they only applied the
constraint to the target position, except for [8], where the
speed vector is projected, but without use of the
constrained motion models.

First a deterministic technique is described. The estimated
state x(klk) and its covariance matrix P(klk) can be
orthogonally projected on a given road segment s. The
resulting state estimate, )?p(k\k)a whose position is

constrained on the segment s, and whose velocity in the
direction of s, is the solution of the following equation
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where Pl(s), a 4x4 matrix, is the conventional state

orthogonal projection matrix on the road segment s. The
reader is referred to [9] for the detailed proof of Egs.
(4,5). However this technique does not use the known
state covariance P(klk) in the computation of fcp (k‘k).

Next the probabilistic state projection is described. The
unconstrained filtered target state x(klk) is the mean value
of the posterior state distribution p(x(k)1Z) [10]. The
constrained estimate X, (k‘k), resulting from the

probabilistic projection, maximizes the probability
distribution p(x(k)IZ), while also satisfying the road
constraints. The probabilistic state projection thus obeys

2
P(k[#)"

fcpp (k|k) = ar% glin"x — fc(k|k}| 6)

This probabilistic state projection on road segment s
satisfies the minimization of the Mahalanobis distance
(see [9]). Compared to the projection of the measurement
defined by Eq. (2), the state projection uses the additional
velocity constraint. For the velocity vector to be parallel
to the direction of the road segment s, we use the
orthogonal condition between the velocity vector and a
normal vector to segment s called 7. This condition is

equivalent to the zero scalar product <;(k)‘ ﬁ> =0.

The minimization problem defined by Eq. (6) can then be
written as

%, (k)= Arg ngn[(x —#{e)) P) " (- 5| D

x,m{

where b= 050 ®)
0 a 0 b

Using a Lagrangian approach, the analytical expression

for constrained MAP estimate and its associated

covariance matrix are given in [9] and recalled hereunder
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Egs. (4,5) and Egs. (9-10) were implemented in the
estimator to be described in the next section.

4 The variable structure multi model
estimator

The functions handled by the estimation cycle are:

- the management of the feasible dynamic models that
each track can follow, based on the set of roads that can
be reached by the tracks at the time of the measurement to
be assigned. This enables the track’s state prediction based
on a track context dependant model set.

- the gating of the incoming measurements to determine
the feasible measurement-to-track assignments,

- the computation of the cost, which is used as the
decision criterion to the assignment function,

- the track's state estimation posterior to the assigned
measurement,

- the possible correction of the estimated state, by
projecting it on the road network when road targets are
involved.

The estimation process can be considered as a cycle, since
the above steps form a recursive process that can be
repeated without any decision on measurement-to-track
assignment. Indeed, the estimation and cost evaluation
processes are conducted for all feasible assignments in the
decision window. These functions will be examined in
more detail in the following sections, and the structure of
the multi model estimator will be justified.

4.1 Dynamic model management

This section justifies the approach that was implemented
to manage the hypotheses on the kinematic behaviour of
the targets, and to express their internal states. We
especially detail why an IMM approach was not chosen
for tracking targets bound to the road network.
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Figure 2: Illustration of road model hypotheses
maintenance for a single track

As it is shown in Figure 2, we chose to generate and
maintain as individual and competing hypotheses all
possible road segment sequences that the track could
follow from its last updated state to the time of the



measurement to which it is predicted. Figure 2 is an
example, where, posterior to the assignment of a given
measurement, the track could follow two different road
segment sequences. Thus the track's internal state is made
of hypotheses H; and H,. Figure 2 shows the observation
predictions based on this multi model internal state, at the
time of the next measurements. In general, the
measurements in the scan have slightly different time
stamps.

In order to determine all feasible measurement-to-track
assignments, predictions must be computed on each track,
and on each of their dynamic models, at the time of the
candidate measurement. In Figure 2, it can be seen that
measurement m, can't be assigned to the existing track
because no dynamic model is liable to produce such a
measurement. Conversely, measurement m; can be caused
by hypotheses H;, or H,. Consequently, the segment
sequences f, a-b-e, and a-b-d will compete to explain
measurement ;. For a given measurement-to-track
assignment within the decision window, all possible road
segment sequences are examined. The following
subsections detail the systematic scheme followed inside
the estimation cycle.

4.2 Prediction, and determination of the
feasible assignments

Posteriorly to the last assignment, all targets are predicted
on the basis of each of their dynamic hypotheses. Each
such hypothesis assumes the track has followed a given
road segment sequence, and thus, is currently on a given
road segment. The prediction of each hypothesis is simply
done by following the road network. A continuous white
noise acceleration model [12] (often called constant
velocity model) is used on each generic coordinate x. The
covariance matrix of the discrete-time process noise v(k)
along the x coordinate axis is,

0(k) = E[i(k)v" (k)| = i/ / (11)
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where ¢, is the constant process noise intensity expressed
in [lenght’/time’] whose values are given in Sec.5.2.
When a junction is crossed, the hypothesis is split in as
many segments leaving the junction. Thus in Figure 2,
conditionally to hypothesis H,, and assuming equal
chances of using each segment, the prior probabilities
(called P, in Eq. (12)) of the target to end up on
segments e, d or ¢ are equal to 1/2.1/3=1/6. Note that
prior knowledge on the compliance of the target type to
the road type, or the intent of the target, can cause prior
probabilities to be non equal. Note, on Figure 2, that these
predictions are used to determine which measurement can
be assigned to which track. Thus a measurement that falls
inside the validation ellipse of a target for any given
model can be assigned to that track. This is the case for
measurement m; Note also that conditioned on the
assignment of measurement m;, the only possible dynamic
sequence is segments a, b, then c.

4.3 Computation of the posterior values

Since no assignment decision is taken by the estimator,
posterior values of dynamic model conditioned track state
are computed for each measurement that could be
assigned. The posterior probabilities of the dynamic road
models are updated in the Bayesian framework. Thus,
referring to Figure 2, posteriorly to the assignment of
measurement m;, the posterior probability P{Si‘;ﬁ]} that

the target follows sequence S;, S; € {f, abe, abd} is

Pprior(si)x p[’/hltsi] .

ZPprior(Sj)X plr?l,‘SjJ

jelf abe.abd}

Pis | }= (12)
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Note that the sequences such as abc, that the track can
follow, but whose validation ellipse doesn't include the
measurement are neglected in Eq. (12). The track's state
update, conditional to the assigned measurement and the
road sequence is computed with a standard Kalman filter.

4.4 Projection of the target’s state on the
road network

Assuming the target is bound to the road network, its
filtered state is not necessarily positioned on the road, due
to the measurement error. The use of a projection method
allows to correct the state estimate and the associated
covariance. Consequently, the final track estimated state
will always belong to the road. Sec. 5 analyses the impact
on tracking performance whether the deterministic or the
probabilistic internal state projection is used.

The choice of the segment on which to project the target’s
state is also an issue. If several road segments are
candidates, the segment whose projection is the closest to
the initial filtered state must be selected. However, in our
implementation, we have chosen to arbitrarily project the
filtered state on the segment that includes the state
prediction. The benefit of this choice is the reduction of
the computing load since there is no best projection
selection, and no computing of the candidate states and
probabilities. Moreover, the dynamic hypothesis
generation is limited to the prediction stage. The risk of
systematically projecting on the prediction segment is
particularly visible when the state predictions come close
to a junction. Indeed, the target can actually pass the
junction, whereas its estimated state will be projected
before the junction. This distance between estimated state
and real target position can occasionally lead to higher
estimation errors (Figure 11).

4.5 Conclusion on estimator optimality

This section justifies the adaptation of the estimator from
[11] to an optimal estimator that is expected to evolve to
exploit the interaction between target type data and the
individual feasible road segment sequences.

The exhaustive generation and comparison between all
feasible road sequences requires more computation than



the IMM, which uses only as many filters as the number
of models that can be followed at the time of the
measurement of interest [12]. However, it is preferred to
the IMM framework for tracking ground targets. Indeed
the transition step specific to the IMM aims to update the
prior states, associated covariance, and probability for
each possible dynamic model, before predicting to the
time of the next measurement. This updating is done by
mixing different dynamic models followed before
transition according to Eq. (13).
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transition probabilities from any model i to any model /,
Piti (l) is the last updated probability of the target

following model 1, and "+"denotes the values computed
after the IMM transition. Eq. (13) shows the mixing of the
internal state x, and the associated covariance R™ for
model i. Thus %% _y(i), resulting from mixing, is used

as a new prior value for prediction according to dynamic
model i. However, this modelling is questionable for road
targets. Indeed, the mixing of different road models for
the purpose of transition does not generally produce
another road model. Moreover, model i represents a road
that can be reached at the time 7, of the next

measurement, and that generally does not exist at the
track's current location, at the time of transition 4,

Consequently computing an updated state %1 (i) by

mixing, and predicting it according to model i does not
reflect the real on-road target trajectory. In addition, the
existing algorithm is to be upgraded so the belief on target
type can influence the dynamic models (ie: the road
segment sequence) that it can follow. This is also a reason
why we prefer to maintain all possible segment sequences
starting from the beginning of the decision window,
instead of combining models at each new measurement
assignment.

5 Simulations

5.1 State projections performances

This section describes the influence of the sensor-to-road
configuration on the state projection technique precision.
For this, we consider a target moving on a single road
segment s delimited by points A and B (see Figure 3 to
Figure 5 for their coordinates). A simulated MTI sensor is

positioned at the origin of the local reference frame, and
tracks the target for each Monte Carlo run. The target is
detected every 10 seconds with 50 m range and 0.005 rad
azimuth standard deviations measurement errors. The
target is moving along the road segment s at constant
velocity (10 m/s). The process noise intensity g (see Eq.
(11)) is fixed at 0.0018 m’/sec’ along the road and 7.5.10"
m’/sec’ orthogonal to the road.

Let 6 be the angle between the sensor's line of sight, and
the road direction on which the target is moving. In cases
1, 2, and 3, we have respectively fixed 6 to 0, 7/2, and /4
radians. We compare the root mean square estimation
error of the determinist, and probabilistic projection
techniques in position and velocity on 100 Monte-Carlo
runs.

This simulation shows that for the two special cases of
road segment orientation (cases 1 and 2), both projection
techniques give similar estimation errors (Figure 3, and
Figure 4). On the opposite, when 6 equals m/4 radians
(case 3), the difference between estimation errors is
clearly visible (Figure 5). More generally, the
probabilistic projection technique of the state is more
precise or equal to the orthogonal projection technique.
Note also that estimation errors are smaller in case 1 were
the sensor
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measurement error  covariance matrix  gives
complementary positional information to the predicted
state, since its most precise range measurement is in the
direction of the road. This can also be seen by comparing
Figure 6 and Figure 8.

5.2 Filtering simulations

The Figure 6, Figure 7, and Figure 8 below are results of a
standard Kalman filter simulation for a single target state
update. They respectively correspond to the 99%
measurement error ellipses [R(k+1)] inclinations of 0,
/4, and 7/2 radians. The goal of this experimentation is to
show the covariance matrix orientations of the updated
state ( [P(k+1lk+1)] before projection), that can possibly
be encountered with the simulation parameters that will
later be used by the S-D Assignment VSMM multi target
tracker simulation (Sec. 5.3). Indeed, with a real road
network, the sensor-to-road angles can take any value.
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Figure 6: Target state update with [R(k+1)] inclined at 0°
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Figure 7: Target state update with [R(k+1)] inclined at 45°

The target's initial position is at the center of the reference
frame. It moves on a horizontal road segment at constant
speed of 15 m/s. The initial position and speed estimation
error covariance matrices are respectively given by

[Ppos(k‘k)]:[w(;)o 0}(m3) [Pspeed(k‘k)]:|i20 ° }(m/s)2 (1

25 0 001

The longitudinal and orthogonal process noise intensities
(see Eq. (11)) are respectively given by g, =0.5 m’/sec’,
and ¢, =0.01 m%sec’. The time to the associated
measurement (7 ,-t) is 15 sec. Finally, the positional
measurement error covariance matrix expressed in the
eigen vector basis is
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Figure 8: Target state update with [R(k+1)] inclined at 90°

The above figures show
e a gain in precision when the sensor's precision is
complementary to the road direction (Figure 6),
and
o that [P(k+1lk+1)] remains oriented in the road
direction, in spite of the different possible
orientations of [R(k+1)].
The nearly constant orientation of [P(k+11k+1)] is due to
the strong road directional constraint included in the
process noise (g, << g,). The belief that the target stays on
the road segment implies the use of a small value for g,.
Indeed, higher values lead to an important predicted
positional imprecision orthogonal to the road. In such
cases, the orientation of [P(k+11k+1)] relative to the road
could significantly vary.
This section has shown, that for realistic process noise and
measurement error values; the orientation of [P(k+11k+1)]
stays along the prediction segment. One can thus



anticipate, that the difference in estimation error using the
deterministic and probabilistic projections will be small,
compared to the estimation errors themselves.

5.3 S-D VS-MM simulation using a real
road network

This section shows the outputs of the multi target tracker
on a real road network. The tracking performance is
shown in terms of positional estimation error. First the
tracking precision difference is evaluated whether a
projection algorithm is used or not (Figure 10). In this last
case, a two-constant velocity model Fixed Structure
Interacting Multiple Model Filter (FS-IMM) [12] is used
with g,= 0,1 m?/sec’, for the non maneuvering model, and
qr =0,5 m%/sec’, for the maneuvering model. Second, the
difference in estimation error is shown whether the
deterministic or probabilistic projection is used.

The scenario used in Figure 9 to Figure 11 is based on a
real road network in the region of Tarascon, France. The
simulated scenario includes 11 road targets moving at
approximately 20 m/s; the road segment on which the
targets are moving is chosen randomly each time it
reaches a junction. A single MTI radar produces one scan
every 15 seconds with a 0.9 detection probability. The
decision window includes 3 scans, thus the tracker uses a
4-dimensional assignment. The simulated measurement
noise [R] is that indicated in Eq. (15), inclined at 45°, and
represented on Figure 9 (/R] not to scale).

Figure 9: Simulated target trajectories

The target that we chose to focus on in the sequel passes
points A, B, and C following an upside-down "V" shaped
trajectory on Figure 9.
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Figure 10: Benefit of modeling the road information
(estimation error versus target's abscissa)

Figure 10 shows the obvious gain in estimation precision
when the road information is modeled using a directional
process noise (values given in Sec. 5.2), and a projection
method to adjust the filtered target state. With a Fixed
Stucture-IMM, the position errors average about 150m,
whereas they average 40m using the road information,
when the sensor's line of sight is parallel to the road
including the target (road portion from A to B, Figure 9).
Figure 11 shows that the position estimation errors for
both projection techniques do not differ significantly. This
fact can be noticed for other targets whatever the sensor-
to-road angle. This result was predicted in Sec. 5.2 and
shows that the more the road direction is reflected in the
process noise, the less the two projection methods will
differ. Moreover, the direction of the road from A to B
(Figure 9) varies slightly, further reducing the projection
differences. Also a higher precision is clearly visible for
both methods for a target x-position >-10000m. This is
due to the sensor-to-road configuration similar as for
Figure 6.
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Figure 11: Position estimation error comparison
(estimation error versus target's abscissa)

The fluctuations in error estimation values for x<-10000m
have two reasons (in addition to the random measurement



errors). First the updated state is systematically projected
on the road segment including the state prediction (see
Sec. 4.4). This can lead to a higher estimation error when
the state prediction is positioned just before a junction.
Second, when several dynamic hypotheses are admissible,
the synthetic state is computed as a combination of the
corresponding projected states. This synthetic state can
noticeably differ from the real road target location.

6 Conclusions

An S-D Assignment Variable Structure Multiple Model
tracker designed to handle multiple ground targets using a
real road network was described. The road information
was integrated in the process noise, as well as in the
projection methods following state filtering. Both the
deterministic and probabilistic projection methods were
analyzed, and simulated on a single straight road segment.
In this first simple simulation, the projection method
proved to produce the most precise estimations. These
methods were then integrated in the real road network
environment. It was shown that the high-directional road
constraints included in the state prediction diminished the
possible difference between the two projection methods.
Several factors, including constantly changing road
direction and systematic state projection on the prediction
segment also reduce the difference. Nevertheless, the
inclusion of a projection module in the track state
updating process was shown to increase the estimation
precision dramatically. However, if a projection method is
certainly a fundamental step to enhance road target
tracking precision, it is no longer sufficient to handle off-
road capable targets. Thus the above estimator is currently
being generalized to exploit target type data, allowing to
recognize the targets' road status, on order to correctly
apply road projection methods.
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