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Abstract – The combination of possibly conflicting beliefs
and evidence forms an important part of various disciplines
of artificial reasoning. In everyday discourse dogmatic be-
liefs are expressed by observers when they have a strong
and rigid opinion about a subject of interest. Such be-
liefs can be expressed and formalised within the Demspter-
Shafer belief theory. This paper describes and compares
methods for combining dogmatic or highly conflicting be-
liefs within this framework.
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1 Introduction
In the belief theory community there has been continuous

controversy around the so-called Dempster’s rule since the
publication of Shafer’s book A Mathematical Theory of Ev-
idence [17] . The purpose of Dempster’s rule is to combine
two beliefs into a single belief that reflects the two possi-
bly conflicting beliefs in a fair and equal way. Dempster’s
rule has been criticised mainly because highly conflicting
beliefs tend to produce counterintuitive results. This draw-
back has been pointed out by several authors [21, 1] includ-
ing Lotfi Zadeh[21] who provided a very simple example
which will be referred to as Zadeh’s example below.

Alternatives to Dempster’s rule have been proposed by
several authors [20, 7, 18, 16, 3, 14, 11]. These rules ex-
press different behaviours with respect to the beliefs to be
combined but have the same basic goal : Manage the con-
flict when combining beliefs. This shows that the prob-
lem of conflict management is of major importance. A
recent theoretical contribution is the Dezert-Smarandache
theory [4] where beliefs are defined on a so-called hyper-
power set of a frame of discernment which breaks with the
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classic assumption that elements in a frame of discernment
must be mutually exclusive, and thereby provides a new in-
terpretation and framework for managing belief conflicts.

In this paper, we describe various proposals for com-
bining beliefs and how they handle cases when the beliefs
are conflicting and dogmatic. Section 2 presents a back-
ground on Dempster-Shafer (DS) theory of evidence and
Section 3 describes Dempster’s rule of combination as well
as its unnormalised and disjunctive versions. The subse-
quent sections introduce alternatives to Dempster’s rule i.e.
the Weighted Operator (Section 4), the minC Combination
(Section 5), and the Consensus Operator (Section 6). In
Section 7, we compare the performance of these operators
on some simple examples of combining conflicting beliefs.
Finally, a discussion of the proposed combination rules is
provided in Section 8 followed by the conclusion.

2 Fundamentals of D-S Theory
In this section several concepts of the Dempster-Shafer

theory of evidence [17] are recalled in order to introduce
notations used throughout the paper. Let Θ = {θk, k =
1, · · · ,K} denote a finite set of exhaustive and exclusive
possible values for a variable y of interest1. A basic belief
assignment (bba) m on Θ is defined as a function from 2Θ

to [0, 1] satisfying:

∑

A⊆Θ

m(A) = 1 . (1)

Values of a bba are called basic belief masses (bbms). A bba
m such that m(∅) = 0 is said to be normal. This condition
was originally imposed by Shafer, but it may be relaxed if
one accepts the open-world assumption stating that the set
Θ might not be complete and y might take its value outside
Θ. Each subset A ⊆ Θ such as m(A) > 0 is called a focal
element of m. A bba m can be equivalently represented by

1Some authors have proposed to allow non-exhaustive[18] or non-
exclusive[4] sets.



a non additive measure: a belief function bel: 2Θ → [0, 1],
defined as

bel(A) ,
∑

∅6=B⊆A

m(B) ∀ A ⊆ Θ . (2)

The quantity bel(A) can be interpreted as a measure of
one’s belief that hypothesis A is true. Note that functions
m and bel are in one-to-one correspondence [17] and can
be seen as two facets of the same piece of information. If
all the focal elements are singletons (i.e. one-element sub-
sets of Θ) then we speak about Bayesian belief functions. If
all the focal elements are nestable (i.e. linearly ordered by
inclusion) then we speak about consonant belief functions.
A dogmatic belief function is defined by Smets as a belief
function for which m(Θ) = 0. Let us note, that trivially,
every Bayesian belief function is dogmatic.

As already mentioned, this paper focuses on the case
where the beliefs are highly conflicting and dogmatic. In
the following sections we describe some rules and compare
their performance when applied to such beliefs.

3 Dempster’s Rule
Let now assume that we have two pieces of evidence ex-

pressed by m1 and m2 representing two distinct items con-
cerning the truth value of A. These two bba’s can be aggre-
gated with the conjunctive operator ∩©, yielding to a unique
belief function corresponding to bba m ∩© defined as:

(m1 ∩©m2)(A) ,
∑

B∩C=A

m1(B)m2(C) ∀ A ⊆ Θ. (3)

This rule is sometimes referred to as the (unnormalised)
Dempster’s rule of combination. If necessary, the normality
assumption m(∅) = 0 may be recovered by dividing each
mass by a normalisation coefficient. The resulting opera-
tor which is knows as Dempster’s rule denoted by m⊕ is
defined as:

(m1 ⊕m2)(A) ,
(m1 ∩©m2)(A)

1−m(∅)
∀ ∅ 6= A ⊆ Θ (4)

where the quantity m(∅) is called the degree of conflict be-
tween m1 and m2 and can be computed using:

m(∅) = (m1 ∩©m2)(∅) =
∑

B∩C=∅

m1(B)m2(C) . (5)

The use of Dempster’s rule is possible only if m1 and m2

are not totally conflicting, i.e., if there exist two focal ele-
ments B and C of m1 and m2 satisfying B ∩ C 6= ∅. This
rule verifies some interesting properties (associativity, com-
mutativity, non-idempotence) and its use has been justified
theoretically by several authors [19, 13, 5] according to spe-
cific axioms. For algebraic analysis of the Dempster’s rule
on binary frame of discernment see e.g. [8, 9].

The normalisation in Dempster’s rule redistributes con-
flicting belief masses to non-conflicting ones, and thereby
tends to eliminate any conflicting characteristics in the
resulting belief mass distribution. The non-normalised
Dempster’s rule avoids this particular problem by allocat-
ing all conflicting belief masses to the empty set. Smets
explains this by arguing that the presence of highly con-
flicting beliefs indicates that some possible event must have
been overlooked (the open world assumption) and therefore
is missing in the frame of discernment. The idea is that
conflicting belief masses should be allocated to this miss-
ing (empty) event. Smets has also proposed to interpret the
amount of belief mass allocated to the empty set as a mea-
sure of conflict between separate beliefs 2.

Another approach on how to eliminate conflicts from the
Dempster’s rule is to replace ∩ by ∪ in Eq.(3) which pro-
duces the Disjunctive (or Dual Dempster’s) Rule [6] de-
fined below.

(m1 ∪©m2)(A) ,
∑

B∪C=A

m1(B)m2(C) ∀ A ⊆ Θ. (6)

The interpretation of (conjunctive) Dempster’s rule is that
both beliefs to be combined are assumed to be are correct,
while at least one of them is assumed to be correct in the
case of the Disjunctive Rule.

4 The Weighted Operator
The weighted operator [14] has been created to overcome

the sensibility problem of Dempster’s rule which produces
unexpected results when evidence conflicts. The idea of the
weighted operator is to distribute the conflicting belief mass
m(∅) on some subsets of Θ according to additional knowl-
edge. More precisely, a part of the mass m(∅) is assigned to
a subset A ⊆ Θ according to a weighting factor denoted w.
This weighting factor can be a function of the considered
subset A and belief functions m = {mj , j = 1, · · · , J}
which are involved in the combination and have caused the
conflict. This idea is formalised in the following definition
of the Weighted Operator.

Definition 1 (Weighted Operator) Let m = {mj , j =
1, · · · , J} be the set of belief functions defined on Θ to be
combined. The combination of the belief functions m with
the weighted operator, denoted C, is defined as:

mC(∅) , w(∅,m).m(∅) (7)

mC(A) , m ∩©(A) + w(A,m).m(∅) ∀ A 6= ∅. (8)

In the definition of the weighted operator C, the first term,
m ∩©, corresponds to the conjunctive rule of combination.

2Note that conflicting beliefs can exist inside of so called non-
consonant beliefs (non-consonant belief functions , see [17]). This con-
flict is an accomplice to conflict between separate beliefs when allocating
positive belief mass to the empty set.



The second one is the part of the conflicting mass assigned
to each subset A and added to the conjunctive term. The
symbol C has been chosen to highlight these two aspects.
Weighting factors w(A,m) ∈ [0, 1] are coefficients which
depend on each subset A ⊆ Θ and on the belief functions
m to be combined. They must be constrained by:

∑

A⊆Θ

w(A,m) = 1 (9)

so as to respect the property that the sum of mass functions
must be equal to 1 (cf. Eq.(1)). In order to completely de-
fine this operator, we need additional information to choose
the values of w which allow to have a particular behaviour
of the operator.

This generic framework allows Dempster’s rule of com-
bination and other proposed by Smets [18], Yager [20] and
Dubois and Prade [7] to be rewritten. For each operator, we
only have to define the weighting factors w(A,m) associ-
ated to each subset A ⊆ Θ. For example, the unnormalised
Dempster’s rule is no more than the weighted operator with
w(A,m) = 0 for all A ⊆ Θ\{∅} and w(∅,m) = 1. This is
the open world assumed by Smets. Yager [20] assumes that
the frame of discernment Θ is exhaustive but its idea con-
sists in assigning the conflicting mass m(∅) to the whole
set Θ. According to the weighted operator previously pre-
sented, it is easy to reformulate the Yager’s idea in setting
w(Θ,m) = 1 and w(∅,m) = 0. According to the choice
of weights w, we can define a family of weighted opera-
tors. Another operator of this family is the proportionalised
combination which has been proposed by Daniel in [2].

In [14], another example has been proposed by the au-
thors in the case of a pattern recognition problem. It con-
sists in optimising the weighting factors values according
to some criteria minimisation. This application gives in-
teresting performance when compared to Dempster’s rule.
Unfortunately, the operator previously defined is not asso-
ciative as remarked by Haenni [15]. However, an n-ary ver-
sion of the operator exists, and combining n input bbas si-
multaneously can be a practical substitute for associativity
in many real world applications.

According to the definition 1, we define a weighted av-
erage in computing the values of weighting factors w from
m using a statistical average. This leads to the definition of
the Weighted Average Operator.

Definition 2 (Weighted Average Operator) Let ma the
belief function resulting from the weighted average com-
bination of belief functions m using the operator C and
weighting factors wa. It is defined as:

ma =
x

wa

m (10)

with wa computed ∀A ⊆ Θ \ {∅} as:

wa(A,m) =
1

J

J
∑

j=1

mj(A) (11)

and wa(∅,m) = 0.

It is easy to see from the definitions 1 and 2 that the
weighted average operator has two different behaviours ac-
cording to the value of m(∅). This operator, part of the
family of weighted operators, can be used for combining
dogmatic and conflicting beliefs.

5 The minC Combination
The minC combination (the minimal contradic-

tion/conflict combination) is a generalisation of the
unnormalised Dempster’s rule. m(∅) is not considered as
an argument for new unknown elements of the frame of
discernment, m(∅) is considered as a conflict3 arising by
conjunctive combination. To handle it a system of different
types of conflicts is considered with respect to basic belief
masses which produce it.

We distinguish conflicts according to the sets to which
the original bbms were assigned by mj . Let us assume dif-
ferent singletons A,B,C (i.e. single-element subsets of Θ).
Conflict is denoted by “×” so that e.g. A×B means conflict
between beliefs in A and B.

There is only one possible type of conflict on belief
functions defined on binary frame of discernment, and
in that case the minC combination after proportionalisa-
tion coincides with the conjunctive rule. In the case of
an n-ary frame of discernment we distinguish different
types of conflicts, e.g. A × B, A × (B ∪ C), A ×
B × C, if mi(A),mj(B) > 0, mi(A),mj(B ∪ C) >
0, mi(A),mj(B),mk(C) > 0 etc. The very important
role play so called potential conflicts, e.g. (A∪B)×(B∪C)
which is not a conflict in the case of combination of two
beliefs ((A ∪ B) ∩ (B ∪ C) = B), but it can cause a con-
flict in a later combination with another belief, e.g. real
conflict (A ∪ B) × (B ∪ C) × (A ∪ C) because there is
(A∪B)∩(B∪C)∩(A∪C) = ∅. In order not to have an in-
finite number of different conflicts, the conflicts are divided
into classes of equivalence which are called types of con-
flicts, e.g. A×B ∼ B×A ∼ A ×B×B×B×A×A×A,
etc. For more detail see [3].

The minC combination is commutative and associa-
tive. It overcomes some disadvantages of both versions
of Dempster’s rule (normalised and unnormalised). On
the other hand, this theoretically nice combining rule has
a computational complexity increasing with the size of the
frame of discernment.

3The term “contradiction” is used in [3], while we use “conflict” here
in order to have a uniform terminology.



Due to the fact that belief masses are assigned also to
elements represented as types of conflicts the result of the
minC combination is a generalised belief function. To ob-
tain a belief function according to Eq.(2) we have to ap-
ply proportionalisation of bbms assigned to conflicts. Note
that such a proportionalisation does not keep associativity.
Hence we have to always keep the generalised version to be
prepared for later combination with other beliefs.

Several variants of proportionalisation is discussed in [3].
We use the following one in this text. Belief mass assigned
to a conflict is proportionally distributed among all focal
elements which are contained in the conflict.

E.g. we present now how to proportionalize m0(A ×
(B ∪ C)): let us assume m0(A × (B ∪ C)) = 0.24 and
m0(A) = 0.1, m0(B) = 0.1, m0(C) = 0.2, m0(A ∪
B) = 0.0, m0(A∪C) = 0.0, m0(B ∪C) = 0.1, m0(A∪
B ∪ C) = 0.1 . It should be noted that the sum of the
stated bbms 6= 1 because the other positive bbms are as-
signed to the another element of Θ (if |Θ| > 3) and/or to
another types of conflict (A × B, B × (A ∪ C), . . .). All
elements corresponding to A,B, and C are contained in
A × (B ∪ C), and thus we distribute m0(A × (B ∪ C))
proportionally among all nonempty subsets of A ∪ B ∪ C.
We add m0(A)

0.6 m0(A× (B ∪C)) = 0.24
6 = 0.04 to m0(A);

in general m0(X)
∑

Y ⊆A∪B∪C

m0(Y )m0(A× (B∪C)) to m0(X), for

any X ⊆ A ∪B ∪ C.

6 The Consensus Operator
6.1 The Opinion Space

The consensus operator [10, 11] is not defined for general
frames of discernment, but only on binary frames of dis-
cernment. If the original frame of discernment is larger than
binary it is possible to derive a binary frame of discernment
containing any element A and its complement A through
simple or normal coarsening[12]. After normal coarsening,
the relative atomicity of A is equal to the relative cardinality
of A in the original frame of discernment.

An opinion basically consists of a bba on a (coarsened)
binary Θ with an additional relative atomicity parameter
that enables the computation of the probability expectation
value (or pignistic belief) of an opinion.

Definition 3 (Opinion) Let Θ be a (coarsened) binary
frame of discernment containing sets A and A, and let mX

be the (coarsened) bba on Θ held by X . Let bX
A = mX(A),

dX
A = mX(A) and uX

A = mX(Θ)4 be called the belief,
disbelief and uncertainty components respectively, and let
aX

A represent the relative atomicity of A. Then X’s opinion
about A, denoted by ωX

A , is the ordered tuple:

ωX
A , (bX

A , dX
A , uX

A , aX
A ) .

4Note that u = 1 − b − d corresponds to vagueness in Hájek-Valdés
approach [8, 9].

The belief, disbelief and uncertainty components of an
opinion represent exactly the same as a bba, so the follow-
ing equality holds:

bA + dA + uA = 1 , A ∈ 2Θ \ ∅. (12)

Opinions have an equivalent represention as beta prob-
ability density functions (pdf) denoted by beta (α, β)
through the following bijective mapping:

(bA, dA, uA, aA)←→

beta
(

2bA

uA
+ 2aA, 2dA

uA
+ 2(1− aA)

)

.
(13)

This means for example that an opinion with uA = 1
and aA = 0.5 which maps to beta (1, 1) is equivalent to a
uniform pdf. It also means that a dogmatic opinion with
uA = 0 which maps to beta (bAη, dAη) where η → ∞ is
equivalent to a spike pdf with infinitesimal width and infi-
nite height. Dogmatic opinions can thus be interpreted as
being based on an infinite amount of evidence.

6.2 The Consensus Operator
The Consensus Operator defined below is derived from

the combination of two beta pdfs. More precisely, the two
input opinions are mapped to beta pdfs according to Eq.(13)
and combined, and the resulting beta pdf mapped back to
the opinion space again, as described in [10]. The Consen-
sus Operator can thus be interpreted as the statistical com-
bination of two beta pdfs.

Definition 4 (Consensus Operator)
Let ωX

A = (bX
A , dX

A , uX
A , aX

A ) and ωY
A = (bY

A , dY
A , uY

A , aY
A)

be opinions respectively held by agents X and Y about the
same element A, and let κ = uX

A + uY
A − uX

A uY
A . When

uX
A , uY

A → 0, the relative dogmatism between ωX
A and ωY

A

is defined by γ
X/Y
A so that γ

X/Y
A = uY

A/uX
A . Let ωX,Y

A =

(bX,Y
A , dX,Y

A , uX,Y
A , aX,Y

A ) be the opinion such that:

for κ 6= 0 :


















bX,Y
A = (bX

A uY
A + bY

AuX
A )/κ

dX,Y
A = (dX

A uY
A + dY

AuX
A )/κ

uX,Y
A = (uX

A uY
A)/κ

aX,Y
A =

aX
A uY

A+aY
AuX

A−(aX
A +aY

A)uX
A uY

A

uX
A

+uY
A
−2uX

A
uY

A

,

for κ = 0 :


















bX,Y
A = (γ

X/Y
A bX

A + bY
A)/(γ

X/Y
A + 1)

dX,Y
A = (γ

X/Y
A dX

A + dY
A)/(γ

X/Y
A + 1)

uX,Y
A = 0

aX,Y
A = (γ

X/Y
A aX

A + aY
A)/(γ

X/Y
A + 1) .

Then ωX,Y
A is called the consensus opinion between ωX

A

and ωY
A , representing an imaginary agent [X,Y ]’s opinion

about A, as if that agent represented both X and Y .



fe m1 m2 DR UDR DDR WAO minC CO
A 0.9 0.0 0.4737 0.09 0.00 0.4545 0.4737 0.9
B 0.1 0.9 0.5263 0.10 0.09 0.5050 0.5263 0.1
Θ 0.0 0.1 0.0000 0.00 0.81 0.0405 0.0000 0.0
∅ 0.0 0.0 0.0000 0.81 0.00 0.0000 0.0000 0.0

Table 1: Results of combining a dogmatic belief with a non-dogmatic belief.

The consensus operator is commutative, associative and
non-idempotent. Associativity in case κ = 0 is a special
case which is explained in Section 6.3 below.

In case of two totally uncertain opinions (i.e. u = 1) it is
required that the observers agree on the relative atomicity
so that the consensus relative atomicity for example can be
defined as aX,Y

A = aX
A .

6.3 Associativity i.c.o. Dogmatic Beliefs
In case of dogmatic opinions the associativity of the con-

sensus operator does not emerge directly from Def.4 be-
cause a relative dogmatism specifically relates two opin-
ions whereas associativity is a property of combining three
or more opinions. In fact, the consensus operator is only
defined and associative for dogmatic opinions if a relative
dogmatism can be determined for each pair of opinions to
be combined.

Let ωX1

A , ωX2

A and ωX3

A be conflicting dogmatic opinions
about A held by the observers X1, X2 and X3 respectively.
If for example γ

X1/X2

A and γ
X2/X3

A are known, then a con-
sensus opinion can be determined because it is possible to
derive the relative dogmatism between any pair of opinions.
For example γ

X1/X3

A = γ
X1/X2

A · γ
X2/X3

A . However, the
consensus opinion can not be determined if for example
only γ

X1/X2

A is known. In case it is difficult to determine
specific relative dogmatisms it is natural to always use the
default relative dogmatism γ = 1 in which case it is only re-
quired to store the past number of argument bba’s that have
already been combined. The following algorithm describes
how three or more dogmatic opinions can be combined.

1. Choose the order in which the n opinions are to be
combined: ωX1

A , ..., ωXn

A .

2. Define the relative dogmatism between ωX1

A and each

other opinion on the form γ
X1/Xi

A where i ∈ {2, .., n}.

The default value is γ
X1/Xi

A = 1.

3. Compute the consensus opinions ωX1,...,Xi

A stepwise
for each i ∈ {2, ..., n} where the relative dogma-
tism between each opinion pair ω

X1,...,Xi−1

A and ωXi

A

is γ
X1,...,Xi−1/Xi

A =
∑i−1

j=2(γ
X1/Xj

A )/γ
X1/Xi

A for i ∈

{3, ..., n}. The relative dogmatism γ
X1/X2

A was al-
ready defined in the previous step.

7 Comparison of Combination Rules
In this section, we present several examples in order to

compare the performance of the different rules described in
the previous sections. The following notation is used: DR :
Dempster’s Rule, UDR : the Unnormalised Dempster’s
Rule, DDR : the Disjunctive (Dempster’s) Rule, WAO : the
Weighted Average Operator, n-WAO : the n-ary version of
WAO, minC : the minimal Contradiction rule and CO : the
Consensus Operator. The abbreviation “fe” is used to de-
note “focal element”.

7.1 Example 1 : One Dogmatic Belief
Let m1 and m2 represent two distinct pieces of evi-

dence about the states in Θ = {A,B}. In this exam-
ple, we suppose that we want to combine a dogmatic be-
lief function m1 with a non-dogmatic one m2. Table 1
presents these two bba’s with the results obtained by the
previously presented operators. Because the frame Θ is bi-
nary, minC combination after proportionalisation coincides
with DR. For CO, the dogmatic bba totally overrules the
non-dogmatic bba, whereas for WAO and minC the results
are close statistical average.

7.2 Example 2 : Zadeh’s Example
Let m1 and m2 represent two distinct testimonies about

the guilt of three suspects {A,B,C} = Θ in a mur-
der case (see Table 2). Because of the symmetry be-
tween the two testimonies the default relative dogmatisms
γ

m1/m2

A , γ
m1/m2

B , γ
m1/m2

C = 1 are used. It can be seen that
the weighted average and the consensus operators produce
equal results which in fact is the statistical average of m1

and m2. The results in the column for the minC rule in Ta-
ble 2 are produced by proportionalisation of bbms allocated
to conflicts, and are quite similar to those of WAO and CO.
The generalised bba is: m(A) = 0.0, m(B) = 0.0001,
m(C) = 0.0, m(A×B) = 0.0099, m(A×C) = 0.9801
and m(B × C) = 0.0099. The unnormalised Dempster’s
rule indicates, in line with the open world assumption, that
neither of the suspects is guilty.

7.3 Example 3 : Zadeh’s Example Modified
By introducing a small amount of uncertainty in the wit-

nesses testimonies (see Table 3), the weighted average and



fe m1 m2 DR UDR DDR WAO minC CO
A 0.99 0.00 0.00 0.0000 0.0000 0.495 0.4905 0.495
B 0.01 0.01 1.00 0.0001 0.0001 0.010 0.0199 0.010
C 0.00 0.99 0.00 0.0000 0.0000 0.495 0.4905 0.495

A ∪B 0.00 0.00 0.00 0.0000 0.0099 0.000 0.0000 0.000
A ∪ C 0.00 0.00 0.00 0.0000 0.9801 0.000 0.0000 0.000
B ∪ C 0.00 0.00 0.00 0.0000 0.0099 0.000 0.0000 0.000

Θ 0.00 0.00 0.00 0.0000 0.0000 0.000 0.0000 0.000
∅ 0.00 0.00 0.00 0.9999 0.0000 0.000 0.0000 0.000

Table 2: Zadeh’s example.

fe m1 m2 DR UDR DDR WAO minC CO
A 0.98 0.00 0.4900 0.0098 0.0000 0.4900 0.4995 0.492
B 0.01 0.01 0.0150 0.0003 0.0001 0.0101 0.0009 0.010
C 0.00 0.98 0.4900 0.0098 0.0000 0.4900 0.4995 0.492

A ∪B 0.00 0.00 0.0000 0.0000 0.0098 0.000 0.0000 0.000
A ∪ C 0.00 0.00 0.0000 0.0000 0.9801 0.000 0.0000 0.000
B ∪ C 0.00 0.00 0.0000 0.0000 0.0098 0.000 0.0000 0.000

Θ 0.01 0.01 0.0050 0.0001 0.0001 0.0099 0.0001 0.005
∅ 0.00 0.00 0.0000 0.9800 0.0000 0.0000 0.0000 0.000

Table 3: The modified Zadeh’s example.

the consensus operators produce different but still very sim-
ilar results. The unnormalised Dempster’s rule still indi-
cates that new suspects must be found. The results in the
column of the minC rule in Table 3 are produced by pro-
portionalisation of bbms allocated by minC to conflicts, and
are quite similar to those of WAO and CO. The generalised
bba is: m(A) = 0.0098, m(B) = 0.0003, m(C) =
0.0098, m(A × B) = 0.0098, m(A × C) = 0.9604 and
m(B × C) = 0.0098.

7.4 Example 4 : TRUE and FALSE
The most extreme case of conflicting dogmatic belief is

the case of combining TRUE and FALSE, i.e. when the
two bba’s assign all belief to two distinct non-overlapping
sets in Θ. Results obtained by the different operators are
illustrated in Table 4. Note that the Dempster’s rule is not
applicable because there doesn’t exist two focal elements
A and B of m1 and m2 satisfying A ∩ B 6= ∅. This is
the only case where minC after proportionalisation does not
coincide with DR on binary frames of discernment.

In this special case, several authors propose to use the
disjunctive rule of combination as expressed in Eq.(6). For
this example, the disjunctive combination of m1 and m2

leads to the belief function m(A ∪ B) = 1 which in the
binary case is the vacuous belief function m(Θ) = 1. This
result can be seen as cautious opinion. However, the major
drawback of this rule concerns the non-specificity of the re-
sulting belief function which tends to dramatically increase

in case of highly conflicting beliefs.
The WA and CO operators both produce the statistical

average between m1 and m2. The results in the column
for minC in Table 4 are produced by proportionalisation
of the bbms allocated by minC to conflicts, and the results
are different from those of WAO and CO. The generalised
bba is m(A) = 0.0, m(B) = 0.0, m(Θ) = 0.0 and
m(A×B) = 1.

7.5 Example 5 : Three Dogmatic Beliefs
Let m1, m2 and m3 represent three distinct pieces of ev-

idence about the states in Θ = {A,B}. In case the combi-
nation rule is not associative the result will not be unique.
All the results are shown in table 5. In fact, the bba’s can
be combined in three different ways according to the or-
ders which are defined as follows: 1: m1 ∩©(m2 ∩©m3), 2:
m2 ∩©(m1 ∩©m3), 3: m3 ∩©(m1 ∩©m2). In this table, the ab-
breviation “o” is used to denote “order”.

As mentioned earlier, the WAO is not associative and re-
sults depend on the order of the belief functions to be com-
bined. If we suppose that the three belief functions are si-
multaneously available the n-ary WAO version produces the
results shown in the column for n-WAO.

The result in the column for the minC rule in Table 5
is obtained after proportionalisation of bbms allocated by
minC to conflicts. The generalised bba is m(A) = 0.126,
m(B) = 0.024, m(Θ) = 0.0 and m(A×B) = 0.850.



fe m1 m2 DR UDR DDR WAO minC CO
A 1.0 0.0 N.A. 0.0 0.0 0.5 0.3333 0.5
B 0.0 1.0 N.A. 0.0 0.0 0.5 0.3333 0.5
Θ 0.0 0.0 N.A. 0.0 1.0 0.0 0.3333 0.0
∅ 0.0 0.0 N.A. 1.0 0.0 0.0 0.0000 0.0

Table 4: Results of combining TRUE and FALSE.

fe m1 m2 m3 DR UDR DDR WAO n-WAO minC CO
o 1 2 3
A 0.9 0.7 0.2 0.840 0.126 0.63 0.749 0.710 0.589 0.636 0.840 0.6
B 0.1 0.3 0.8 0.160 0.124 0.03 0.251 0.290 0.411 0.364 0.160 0.4
Θ 0.0 0.0 0.0 0.000 0.000 0.34 0.000 0.000 0.000 0.000 0.000 0.0
∅ 0.0 0.0 0.0 0.000 0.850 0.00 0.000 0.000 0.000 0.000 0.000 0.0

Table 5: Results of combining three dogmatic bba’s.

8 Discussion
Three important characteristics for discussing and com-

paring the operators and their results are:

1. Associativity. From a theoretical point of view asso-
ciativity is always desirable. This property generally
allows to simply rewrite formulae and can be useful
to preserve several other properties. From a practical
point of view, n-ary versions of operators can be used.
This means that in case n bba’s are to be combined,
the n input bba’s must be available simultaneously and
the result is computed with an n-ary operator. Theo-
retically, n-ary versions of operators can’t be replaced
associativity but under some assumptions they can be
easily implemented for real world applications.

2. Simplicity. This can refer to various aspects of using
a particular combination rule. It might for example
mean that the rule is simple to implement in software
or that it does not require storing old input arguments
or intermediate results for future use.

3. Interpretation and assumptions. An operator should
always have a meaningful interpretation and provide
assumptions for when the operator can be applied.
Without this, any operator becomes a purely mathe-
matical concept deprived of any real world meaning.
The previous examples show that the operators pro-
duce different results, and each result should be justi-
fiable through the operator’s interpretation.

DR which is associative and simple, assumes that both
input beliefs are correct, which seems to be incompatible
with the combination of highly conflicting beliefs. DR
therefore produces counterintuitive results with increasing
degree of conflict, and it is not even applicable in the case
of combining TRUE and FALSE.

UDR which is also associative and simple, assumes that
the frame of discernment is not exhaustive (open world),
which makes it unsuitable in case the frame can be well de-
fined. As a result of the open world assumption all con-
flicting belief is contained in the bbm m(∅). Instead of
producing some kind of compromise belief, UDR assumes
that all conflicting belief terms are wrong simply because
they are conflicting. There is a problem of increasing non-
specificity, especially in the case of vacuous belief function
as one of its arguments.

DDR is associative and simple, and moreover has no
difficulties with conflicts. There is a problem of increas-
ing non-specificity especially in the case of vacuous belief
function as one of its arguments. In this extreme case, DDR
will overrule any non-vacuous belief.

WAO is simple but not associative. The n-ary version
of the rule can be used as a substitute for associativity, but
it increases the complexity by requiring that all argument
bba’s must be stored. WAO makes no assumptions about
the correctness of the input beliefs. WAO amplifies conso-
nant belief terms, and converges towards statistical average
when the degree of conflict is high.

minC is associative, produces intuitive results but has
high computational complexity in case the frame of dis-
cernment contains many elements. It commutes with re-
finement/coarsening of frame of discernment on the gener-
alised level, but unfortunately we do not know how to re-
construct n-nary belief from the corresponding set of binary
ones in order to exploit the relative simplicity of the oper-
ator on binary frames of discernment. It still needs further
investigation before the possibility of practical application.

CO is simple and associative and makes no assumptions
about the correctness of the input beliefs. CO amplifies
consonant belief terms, and converge towards statistical av-
erage of conflicting beliefs with equal levels of uncertainty.



Less uncertain beliefs have more weight, and CO interprets
dogmatic beliefs to have infinite weight so that they always
overrule any non-dogmatic beliefs. The combination of two
dogmatic beliefs requires the additional relative dogmatism
parameter, which represents an increase in complexity.

9 Conclusion
In this paper we have focused on the problem of com-

bining highly conflicting and dogmatic beliefs within the
belief functions theory, where dogmatic beliefs are defined
according to Smets as having m(Θ) = 0. There is no sin-
gle philosophical definition of dogmatism in general, and
there is no philosophical interpretation that corresponds to
Smets’ mathematical definition of dogmatism in particular.
The Weighted Average Operator, the minimum Contradic-
tion Combination, and the Consensus Operator provide al-
ternatives to the traditional operators. By not making any
assumptions about missing elements in the frame of dis-
cernment or about the input beliefs being correct or wrong
these new operators produce results that are much more
convincing than those of the traditional operators. Each of
the new operators have advantages and disadvantages, and
the differences in their computational results must be seen
in the light of the interpretations of belief and dogmatism
which can be associated with each operator.
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