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Abstract

Recently, Belief Decision Trees, induction methods based on the Dempster–Shafer Theory of evidence (or belief functions

theory), have been introduced. Such trees give the possibility to interpret each decision rule and quantify the uncertainty on the

prediction. In addition, due to its main ability to represent different kinds of knowledge (from total ignorance to full knowledge),

Dempster–Shafer theory allows us to process training sets whose labeling has been specified with belief functions. This paper

investigates the aggregation of such belief decision trees with several machine learning techniques including bagging and ran-

domization. Bagging builds a decision rule by aggregating outputs of several classifiers optimized from different learning sets.

Randomization consists in building several classifiers where each classifier is trained using a given number of variables drawn

randomly from the original set of features. Several simulations show how such techniques can improve the performance of belief

decision trees.

� 2004 Published by Elsevier B.V.

Keywords: Decision trees; Belief functions; Uncertain labels; Bagging; Randomization
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NCORREC1. Introduction

A pattern recognition problem consists in assigning

an input pattern to a class, given a learning set L
composed of n individual patterns with known classifi-
cation. Each pattern in L is represented by a p-dimen-

sional feature vector xi and its corresponding class label

xi. In recent years, the decision tree approach has be-

come increasingly popular in the Machine Learning

community [5,25,28] to solve this problem. Such tech-

niques give the possibility to interpret each decision rule

in terms of individual features. Unfortunately, decision

trees are very sensitive to small perturbations in the
learning set L as remarked by several authors [4,8].

Multiple Classifiers Systems (MCS) have been proposed

to overcome this problem [29]. Systems that combine the

individual outputs of a set (pool/commitee/ensemble/

team) of classifiers are known to be more accurate than

the best classifier in the set. In this context, two ways
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have been investigated: classifier fusion [14,20] and re-

sampling methods [2,4,8]. These last ones, which include

Bagging, Boosting, Randomization and variants, gen-

erate multiple classifiers by manipulating the training

data given to the learning algorithm. They are known to
decrease the variance of the classification rule and are

well adapted to learning algorithms such as decision

trees [9,11].

Recently, several induction methods based on the

Dempster–Shafer Theory (DST) of evidence [6,12] have

been introduced. Due to their links with belief function

theory and decision trees, these approaches have been

called Belief Decision Trees (BDT’s). Due to its main
ability to represent different kinds of knowledge (from

total ignorance to full knowledge), DST allows us to

process learning sets whose labeling has been specified

with belief functions (which can included probabilistic,

possibilistic or imprecise labels). In [33], we introduce

another multi-class generalization of the method in [6],

which allows us to handle the most general case in which

each example is labeled by a general belief function for
K-class problems. In this approach, an impurity mea-

sure, based on a total uncertainty criterion, is used to

mail to: patrick.vannoorenberghe@univ-rouen.fr
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grow the tree and has the advantage to define simulta-

neously the pruning strategy. In addition, BDT’s give

the possibility to quantify the uncertainty on the pre-

diction and process uncertain labels.

In this paper, we illustrate how the use of Bagging
and Randomization seems to allow further reductions of

classification error rates in the context of Belief Decision

Trees. Basic concepts of belief function theory are first

briefly introduced (see Section 2). The approach based

on the induction of BDT’s and the way to handle

uncertain labels in this framework are described in

Section 3. The problem of aggregating BDT’s using

Bagging and Randomization is introduced in the Section
4 and finally illustrated with experimental results in the

Section 5.
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2. Belief functions and uncertainty

2.1. Belief functions

Let X ¼ fx1; . . . ;xk; . . . ;xKg be a finite space, called

the frame of discernment. A belief function bel is a

function from 2X to ½0; 1� defined as:

belðAÞ ¼
X

;6¼B
A

mðBÞ 8A 
 X; ð1Þ

where m, called basic belief assignment (bba), is a

function from 2X to ½0; 1� verifyingX
A
X

mðAÞ ¼ 1:

Each subset A 
 X such as mðAÞ > 0 is called a focal

element of m. Functions m and bel are in one-to-one

correspondence [30] and can be seen as two facets of the

same piece of information. 1 From this definition, sev-

eral concepts have been derived in order to manage

uncertainty encoded by belief functions. Discounting,

aggregating, coarsening, refinement are very powerful

tools which allow for us to manipulate uncertain infor-
mation. In this paper, we adopt the Transferable Belief

Model (TBM) point of view defined by Smets [32].

Based on rationality arguments developed in this model,

Smets proposes to transform m into a probability

function pm on X (called the pignistic probability func-

tion) defined for all xk 2 X as:

pmðxkÞ ¼
X
A3xk

mðAÞ
jAj ; ð2Þ

where jAj denotes the cardinality of A 
 X. In this

transformation, the mass of belief mðAÞ is distributed

equally among the elements of A. This probability

function is used for decision making at the pignistic level

145

146
1 In the sequel and when necessary, the notation mX½data� will be

used to denote a bba on domain X based on observed ½data�.
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(as opposed to the credal level where beliefs are held and

combined) of the TBM.

2.2. Uncertainty measures

Because a belief function can represent several kinds

of knowledge, it constitutes a rich and flexible way to

represent uncertainty. As mentioned by Klir [18], a be-

lief function can model two different kinds of uncer-

tainty: non-specificity and conflict. A measure of non-

specificity, which generalizes the Hartley measure [15] to

belief functions, was introduced by Dubois and Prade

[10]. It is defined as:

NðmÞ ¼
X
A
X

mðAÞ log2 jAj: ð3Þ

Since focal elements of probability measures are single-

tons, non-specificity is null for probability functions,

and it is maximal (log2 jXj) for the vacuous belief func-

tion (mðXÞ ¼ 1). Several measures of conflict, viewed as

generalized Shannon entropy measure, have also been
introduced [19,1]. A well-known measure defined within

the framework of TBM is discord, defined as:

DðmÞ ¼ �
X
A
X

mðAÞ log2 pmðAÞ: ð4Þ

Another measure of conflict has been introduced in

[26,27] which leads to the definition:

HðmÞ ¼ �
X
A
X

mðAÞ log2 mðAÞ: ð5Þ

These measures have several desirable properties

including continuity, subadditivity and required range

(½0; f ðjXjÞ�). In this paper, we propose to use H instead D
for the conflict measure because it has a unique maxi-

mum contrary to D. Finally, a measure Uk of total

uncertainty can be defined using a linear combination of

N and H :

UkðmÞ ¼ ð1� kÞNðmÞ þ kHðmÞ; ð6Þ
where k 2 ½0; 1� is a coefficient. This criterion has the

same properties as NðmÞ and HðmÞ and can give more

importance to one of these two measures according to

the value of k. The choice of this parameter is not the-

oretically justified (Klir recommends taking k ¼ 0:5). In
the sequel, we shall see that it can be used as a regu-

larization parameter in the context of Belief Decision

Trees.

2.3. Combination’s operator

Let now assume that we have two pieces of evidence

expressed by m1 and m2 representing two distinct items
concerning the truth value of A. These two bba’s can be

aggregated with the conjunctive operator , yielding to
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a unique belief function corresponding to bba m de-

fined as:

m ðAÞ ¼ ðm1 m2ÞðAÞ,
X

B\C¼A

m1ðBÞm2ðCÞ 8A 
 X:

ð7Þ
This rule is sometimes referred to as the (unnormalised)
Dempster’s rule of combination. If necessary, the nor-

mality assumption mð;Þ ¼ 0 may be recovered by

dividing each mass by a normalisation coefficient. The

resulting operator which is knows as Dempster’s rule

denoted by m� is defined as:

ðm1 � m2ÞðAÞ,
ðm1 m2ÞðAÞ
1� mð;Þ 8; 6¼ A 
 X; ð8Þ

where the quantity mð;Þ is called the degree of conflict

between m1 and m2 and can be computed using:

mð;Þ ¼ ðm1 m2Þð;Þ ¼
X

B\C¼;
m1ðBÞm2ðCÞ: ð9Þ

The use of Dempster’s rule is possible only if m1 and m2

are not totally conflicting, i.e., if there exist two focal

elements B and C of m1 and m2 satisfying B \ C 6¼ ;.
This rule verifies some interesting properties (associa-

tivity, commutativity, non-idempotence). In Dempster’s

rule, the normalisation step, which redistributes con-

flicting belief masses to non-conflicting ones, can intro-
duce unexpected results when evidence conflicts due to a

sensibility problem [17]. In [22], authors proposed the

weighted operator which has been created to overcome

this problem. The idea of the weighted operator is to

distribute the conflicting belief mass mð;Þ on some

subsets of X according to additional knowledge. More

precisely, a part of the mass mð;Þ is assigned to a subset

A 
 X according to a weighting factor denoted w. This
weighting factor can be a function of the considered

subset A and belief functions m ¼ fmj; j ¼ 1; . . . ; Jg
which are involved in the combination and have caused

the conflict. This idea is formalized in the following

definition of the Weighted Operator.

Definition 1 (Weighted Operator). Let m ¼ fmj; j ¼
1; . . . ; Jg be the set of belief functions defined on X to be
combined. The combination of the belief functions m

with the weighted operator, denoted w, is defined as:

m
w
ð;Þ,wð;;mÞ � mð;Þ; ð10Þ

m
w
ðAÞ,m ðAÞ þ wðA;mÞ � mð;Þ 8A 6¼ ;: ð11Þ

In the definition of the weighted operator w, the first

term, m , corresponds to the conjunctive rule of com-

bination. The second one is the part of the conflicting
mass assigned to each subset A and added to the con-

junctive term. The symbol w has been chosen to high-

light these two aspects. Weighting factors

wðA;mÞ 2 ½0; 1� are coefficients which depend on each
PROOF

subset A 
 X and on the belief functions m to be com-

bined. They must be constrained by:X
A
X

wðA;mÞ ¼ 1 ð12Þ

so as to respect the property that the sum of mass
functions must be equal to 1. In order to completely

define this operator, we need additional information to

choose the values of w which allow to have a particular

behaviour of the operator. In [22], authors show that it

is easy to define a family of weighted operators

according to the choice of weights w. An example has

been proposed by the authors in the case of a pattern

recognition problem. It consists in optimising the
weighting factors values according to some criteria

minimisation. This application gives interesting perfor-

mance when compared to Dempster’s rule. While this

operator is not associative as remarked by Haenni [23],

an n-ary version exists. In this context, combining sev-

eral input belief functions simultaneously can be a

practical substitute for associativity in many real world

applications.
TED2.4. Partially labeled data

In the context of partially labeled data, the available

learning set can be written in the form:

L ¼ fðxi;mX
i Þ j i ¼ 1; . . . ; ng; ð13Þ

where mX
i is a bba defined on X and represents the

knowledge on the label of the ith example. This belief

function can represent different forms of label including:

• hard labels (HL); represented by a belief function

with one focal element singleton in X, mðfx2gÞ ¼ 1

for example,

• imprecise labels (IL); when the mass is assigned to a

subset of the frame. The example mðfx1;x2gÞ ¼ 1

where it is impossible to choose between x1 and x2

according to the lack of information,

• probabilistic labels (PrL); when the belief function
corresponds to a probability function, mðfx1gÞ ¼
mðfx2gÞ ¼ 0:2, mðfx3gÞ ¼ 0:6,

• possibilistic (PoL) labels; A possibility measure is

known to be formally equivalent to a consonant be-

lief function, i.e., a belief function with focal elements

ordered by set inclusion [7], mðfx3gÞ ¼ 0:7,
mðfx1;x3gÞ ¼ 0:2 and mðfXgÞ ¼ 0:1 with

fx3g � fx1;x3g � X.

Table 1 illustrates an example of these evidential la-

bels on a three-class frame. Unlabeled samples can be
encoded using the vacuous belief function mX

v defined as

mX
v ðXÞ ¼ 1.
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Table 1

Example of uncertain labeling with belief functions (HL: Hard Label,

IL: Imprecise Label, PrL: Probabilistic Label, PoL: Possibilistic Label,

UL: Unknown Label)

A 
 X HL IL PrL PoL UL

fx1g 0 0 0.2 0 0

fx2g 1 0 0.6 0 0

fx1;x2g 0 1 0 0 0

fx3g 0 0 0.2 0.7 0

fx1;x3g 0 0 0 0.2 0

fx2;x3g 0 0 0 0 0

X 0 0 0 0.1 1
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3. Belief decision trees

In this paper, we only consider the Belief Decision

Tree’s approach introduced by Denœux and Skarstein-

Bjanger [6] and extended to multi-class problems by

Vannoorenberghe et al. [33]. Due to its main ability to

represent different kinds of knowledge (from total

ignorance to full knowledge), DST allows us to process
training sets whose labeling has been specified with be-

lief functions (see Section 3.1). An impurity measure,

based on a total uncertainty criterion, is used to grow

the tree and has the advantage to define simultaneously

the pruning strategy Section 3.2. Finally, we present in

paragraph Section 3.3, a multi-class generalization of

the method introduced in [6] which allows us to handle

the most general case in which each example is labeled
by a general belief function [33].

3.1. Principle

A decision tree is a specific graph in which each node

is either a decision node or a leaf node. To each decision

node is associated a test based on attribute values, and a

node has two or more successors (depending on the
number of possible outcomes of the test). The most

commonly used decision tree classifiers are binary trees

which use a single feature at each node with two out-

comes. In [6], the problem of handling uncertain labels

is solved for two-class problems. In this context,

the available learning set is given by: L ¼
fðxi;mX

i Þ j i ¼ 1; . . . ; ng where mX
i is defined on X ¼

fx1;x2g and represents the knowledge on the label of
the ith example. The belief function mX½t� at node t is
then derived from the nðtÞ belief functions mX

i (by

induction using the Dempster’s rule of combination)

and becomes:

mX½t�ðfx1gÞ ¼
X

ðj;kÞjjþk6 nðtÞ
ajk

j
jþ k þ 1

; ð14Þ

where ajk are coefficients which depend only on the

functions mX
i . Similar expressions for mX½t�ðfx2gÞ and

mX½t�ðXÞ can be obtained. In Eq. (14), nðtÞ is the total
TED
PROOF

number of examples reaching the node t. These equa-

tions are derived from a theoretical result on credal

inference presented by Smets in [31]. Demonstrations

concerning the extension to the more general case of

belief functions have been proposed by Denœux and can
be found in [6,33]. They are recalled in Appendix A of

this paper.

3.2. Induction

For each node t, an impurity measure is computed

from the belief function mX½t� using the total uncertainty

measure:

UkðtÞ ¼ ð1� kÞNðmX½t�Þ þ kHðmX½t�Þ: ð15Þ
This impurity measure is used at node t to choose a

candidate split s which divides t into two nodes tL and tR.
The goodness of a split s is defined as a decrease in
impurity by:

DUkðs; tÞ ¼ UkðtÞ � ðpLUkðtLÞ þ pRUkðtRÞÞ; ð16Þ
where pL and pR are, respectively, the proportions of

examples reaching tL and tR. The best split ŝ is chosen by

testing all possible splits for each attribute.

One of the advantages of this technique is that the

tree growing can be controlled using parameter k. In
fact, according to the value of k, it is possible to give

more importance to the non-specificity term which
penalizes small nodes. Optimizing this parameter by

cross-validation allows us to build smaller trees, thus

avoiding overtraining. Unfortunately, this induction

method is only available for two-class problems but can

be generalized as explained in the next section.

3.3. Dichotomous approach for K-class problems

A standard way of handling a K-class problems is to

decompose it into several two-class subproblems. One

way to do this is to train K binary classifiers, each

classifier attempting to discriminate between one class

xk and all other classes. When the learning set is of the

form L ¼ fðxi;mX
i Þ j i ¼ 1; . . . ; ng, where mX

i is a bba

defined on X, this approach implies transforming each

bba mX
i originally defined on X into a bba defined on the

two-class coarsened frame. For each coarsening, a tree is

grown, and the resulting K trees are combined using the

averaging operator. More precisely, let us denote by Xk

the following coarsening of X:

Xk ¼ ffxkg; fxkgg; ð17Þ
where fxkg denotes the complement of fxkg. Each bba

mX
i defined on X may be transformed into a bba mXk

i on

Xk using the following transformation:

mXk
i ðfxkgÞ ¼ mX

i ðfxkgÞ; ð18Þ
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C

mXk
i ðfxkgÞ ¼

X
A
fxkg

mX
i ðAÞ; ð19Þ

mXk
i ðXkÞ ¼ 1� mXk

i ðfxkgÞ � mXk
i ðfxkgÞ: ð20Þ

Each of the K coarsenings thus leads to a training set

Lk ¼ fðxi;mXk
i Þ j i ¼ 1; . . . ; ng, which is used to build a

decision tree.
At the testing step, we obtain, for each input vector x,

K bba’s mXk
x , each defined on a distinct coarsening Xk.

Each of these bba’s can be trivially carried back to X
using the transformation:

mX
x;kðfxkgÞ ¼ mXk

x ðfxkgÞ; ð21Þ

mX
x;kðX n fxkgÞ ¼ mXk

x ðfxkgÞ; ð22Þ

mX
x;kðXÞ ¼ mXk

x ðXkÞ: ð23Þ

Because information sources are not independent,

Dempster’s rule of combination cannot be used to
combine the bba’s mX

x;k, k ¼ 1; . . . ;K. An alternative is to

use the weighted operator as explained in Section 2.3,

which leads to:

mX
x ¼ ŵ mX

x;k; ð24Þ

where ŵ are coefficients to be optimized. This dichoto-

mous approach of Belief Decision Trees allows us to
quantify the uncertainty of the prediction of vector x

(the belief function mX
x itself), process learning sets

whose labeling has been specified with belief functions

(mX
i for each learning example) and is available for K-

class pattern recognition problems. In the Section 4, we

investigate the aggregation of such BDT’s in a Multiple

Classifier System.
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4. Aggregating BDT’s

Several learning techniques, often called resampling

methods, including Bagging, Boosting, Randomization

and variants have been proposed by several authors

[2,4,8]. They generate multiple classifiers by manipulat-

ing the training data given to the learning algorithm.
They are known to decrease the variance of the classi-

fication rule and are well adapted to decision trees which

are very sensitive to learning data.

4.1. Resampling methods for the multiple BDT’s system

Bagging (Bootstrap aggregating) is a popular ap-

proach that builds a decision rule by aggregating out-
puts of several classifiers optimized from different

learning sets [4]. More precisely, the technique consists

in building B bootstrap replicates of the learning set by

drawing n examples uniformly (with replacement) from

L. After the optimization on each bootstrap sample
TED
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Lb, decisions are generally combined by a majority

vote.

Another technique, sometimes called Randomization,

consists in building R classifiers where each classifier is

trained using a given number p0 of variables drawn
randomly from the original set of features [2,16]. This

technique is often referred as Multiple Feature Subset

and has been used for several classification rules [3,21].

Bagging and randomization are known to decrease the

variance of the classification rule [4] and are well

adapted to decision trees due to the instability of such

classifiers, which are very sensitive to small perturba-

tions in the learning set. In this paper, we investigate
these two ways to build more stable classifiers.

In order to take advantages of these techniques, we

also propose to mix in a random bagging architecture.

This last one consists in constructing ensemble of M
classifiers where each one is trained using a bootstrap

replicate with p0 variables drawn randomly.

4.2. Fusion of BDT’s

In the context of belief decision trees, the classifiers

are aggregated at the belief function level using the ap-

proach proposed in [13]. For bagging, outputs of each

classifier mX
b are aggregated into a resulting belief func-

tion mX
B defined as:

mX
BðAÞ ¼ ŵ mX

b ðAÞ 8A 
 X: ð25Þ
Similar expressions mX

R and mX
M are respectively obtained

for randomization and the mixed system. In this paper,

we choose to aggregate the belief functions with the

weighted operator where the coefficients ŵ are optimized

by minimization of a error criterion. As mentioned by

Franc�ois et al. [13], the sum operator can be used in this
context by its main properties: idempotency (averaging

B times a same belief function leads to the function it-

self), commutativity and linearity (between credal and

pignistic levels). Using the weighted operator for

aggregating such rules at the belief function level allows

us to optimize the classifiers fusion in order to take into

account uncertainty of each classifier. The multiple

classifier system has a more certain prediction and seems
to be richer than aggregating classification rules at

decision level.

4.3. Optimization technique

Performance assessment is an important issue in the

design of a multiple classifier system. In a decision-the-

oretic setting, this problem is formalized by considering
a set of actions A, and a loss function L : A� X7!R,

where Lða;x) is the loss incurred if one selects action a
and the true state of nature is x. Typically, each action

in A corresponds to the choice of a class, and the loss is

one for misclassification, and 0 for correct classification.
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The performance of a classifier c : Rd 7!A can then be

measured by taking the expectation of LðcðxÞ;xÞ over

both x and x. This expectation is usually estimated by a

sample average over a test set composed of n0 examples

ðxi;xiÞ, i ¼ 1; . . . ; n0:

E ¼ 1� 1

n0
Xn0
i¼1

X
xk2X

pm̂iðxkÞuki ; ð26Þ

where uki ¼ 1 if pattern i belongs to class k and uki ¼ 0

otherwise. In this equation, pm̂i corresponds to the pig-

nistic probability estimated by the classifier for pattern i.
In our case, this framework needs to be extended be-

cause the output of a BDT classifier is a belief function.
We then need to define the loss associated to an output

bba m̂ when the true state of nature is x. A solution was

proposed in [6] which postulates the following loss

function:

Lðm̂;mÞ ¼ 1�
X
A
X

mðAÞpm̂ðAÞ; ð27Þ

where m̂ is the output bba produced by the classifier, and

m is a bba that quantifies the uncertainty concerning the

true state of nature x. A nice property of this loss

function is that, when mðXÞ ¼ 1, Lðm̂;mÞ ¼ 0 whatever

m̂, which seems reasonable. Optimizing the parameters

of the algorithm in minimizing this loss function allows

for an increase in the performance of the multiple BDT’s
system.
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UNCORREC5. Simulations

For the following simulations, a first learning set L1

is generated using three classes (X ¼ fx1;x2;x3g) con-
taining 50 bidimensional vectors each. Each vector x
from class k was generated by first drawing a vector z

from a Gaussian f ðzjxkÞ � Nðlk;RkÞ, and applying a

non-linear transformation z 7!x ¼ expð0:3zÞ to obtain

non-Gaussian data. The means of the three Gaussian

distributions were taken as: l1 ¼ ð�1;�1Þ0, l2 ¼ ð1; 2Þ0,
l3 ¼ ð�1:5; 2Þ0 and the variance matrices were of the

form Rk ¼ DkAD0
k with

A ¼
ffiffiffi
3

p
0

0
ffiffiffi
3

p
=3

� �
Dq ¼

cos hq � sin hq

sin hq cos hq

� �

with h1 ¼ p=3, h2 ¼ p=2, h3 ¼ �p=3. For each vector xi
with corresponding class label xi in the learning set,

imprecise labeling was obtained as follows. We selected

randomly a subset A such that xi 2 A 
 X and assigned
the whole mass to this subset:

mX
i ðAÞ ¼ 1: ð28Þ

Another learning set L2 was generated using two classes

with Gaussian distributions of dimension p ¼ 10 with
mean vectors l1 ¼ ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ0 and l2 ¼
TED
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ð3; 3; 3; 3; 3; 3; 3; 3; 3; 3Þ0. Covariance matrix Rk were

diagonal matrix of the form

R1 ¼ diagð1; 2; 3; 4; 5; 6; 7; 8; 9; 10Þ;
R2 ¼ diagð1; 2; 3; 4; 5; 5; 4; 3; 2; 1Þ;

where diagðV Þ is a diagonal matrix with V as main
diagonal. For vector xi with known class xi in the

learning set L2, imprecise labeling was generated in

transferring a random part j of belief on subset X using:

mX
i ðfxigÞ ¼ j; ð29Þ

mX
i ðXÞ ¼ 1� j: ð30Þ

Simulating this kind of labeling is useful if we consider

that the expert knowledge from which mX
i has been de-

rived is not fully reliable. In this context, the coefficient j
represents some form of metaknowledge about the ex-
pert reliability, which could not be encoded initially in

mX
i . In the sequel, this set has been called Gaussian

dataset L2.

5.1. Qualitative analysis

We first demonstrate the qualitative effects of bagging

and randomization on the multiple classifier system
using the first learning set L1. Fig. 1 shows the maxi-

mum pignistic probabilities as grey values for the BDT

and the bagged version of the BDT. For each vector x,

this value is obtained using

max
xk2X

pm̂x
ðwkÞ; ð31Þ

where m̂x corresponds to the output belief function of

the multiple classifier system. As can be seen from this

figure, the bagged version of BDT’s seems to be more

precise in the learning phase. In fact, higher values of the

pignistic probabilities 2 in regions without ambiguity

can be observed which leads probably to a more robust
decision in the testing step. The bagged version is built

from B ¼ 200 classifiers and parameters are optimized

using a cross-validation set.

The number B of classifiers for the bagged version has

been fixed heuristically as mentioned in [8]. An experi-

ment shows that only a few number of classifiers can be

sufficient to reduce error rates significantly as we can see

in the left part of Fig. 2. This plot shows the test error
rate vs. the number B of classifiers implied in the bagged

version for the dataset L1. In the sequel, we choose to

adjust heuristically the value B ¼ 20 classifiers, as the

small improvement achieved by higher values is not

worth the computation cost.

For the randomized version of the BDT, we evaluate

the evolution of the test error rate vs. the effect of the

number p0 of variables selected for the Gaussian learning
2 Left and right figures have different scales!
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Table 2

UCI databases: errors rates for the BDT, the minimal error rate and

for the value p0 ¼ Int p
2

� �
þ 1

Database BDT Optimal number p0 ¼ Int p
2

� �
þ 1

DIABETES(8) 0.269 0.242(4) 0.250

GLASS(9) 0.325 0.232(5) 0.232

IRIS(4) 0.052 0.045(2) 0.045

SONAR(60) 0.256 0.201(17) 0.226

VEHICLE(18) 0.296 0.252(10) 0.252

WAVEFORM(21) 0.260 0.211(11) 0.211

Number of features used to perform the error rates are in brackets.
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Fig. 2. This simulation shows that an appropriate choice

of the value of p0 is decisive for a minimal error rate. To

have a good idea for selecting the value of p0, the pro-

posed algorithms have been evaluated using several

databases drawn from the UCI Repository 3 [24]. Al-

though these data only contain hard class labels, the

experiments are reported in Table 2 and illustrate that
an optimal number of features can be chosen to improve

the performance of the classification rule. The first col-

umn of this table shows the error rate of a single BDT

averaged using ten cross-validations. The second col-

umn presents the minimal error rate obtained for the

number of features indicated in brackets. Finally, the

last column is the analogous error rate obtained for the

value p0 ¼ Int p
2

� �
þ 1 where IntðÞ is the integer part. As

design guidelines, we preconize to select this number of
U 530

531
532

533
3 The UCI Repository databases are well known in the machine

learning community.
features p0 ¼ Int p
2

� �
þ 1. This choice is used for the rest

of the simulations of this paper.

5.2. Empirical comparison

In order to illustrate the gain obtained by aggregating

BDT’s, a learning set L2 was generated using two
classes with Gaussian distributions. For vector xi with

known class xi in the learning set L2, imprecise labeling
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was generated as previously mentioned (Eqs. (29) and

(30)). To compare the performances of the four meth-

ods, experiments were repeated ten times with indepen-

dent training sets and test sets T with 15,000 samples.

We chose heuristically, as previously mentioned 20

classifiers (B ¼ R ¼ 20) and p0 ¼ 6 features for this

dataset. Parameters of the algorithm were optimized by
cross-validation. Fig. 3 shows the compared perfor-

mances of the four methods: the initial classifier, the

bagged, randomized and the mixed classification rules.

This last version of the MCS is obtained using bootstrap

replicates of the learning set L2 and a given number p0

of variables drawn randomly from the original set of

features.

As expected, bagging and randomization have the
effect of improving the performances of the decision tree

classifier. With this simulation, the gain obtained by

bagged and randomized versions of classical decision

trees (already observed by several authors) is generalized

to BDT’s and uncertain labels. Finally, mixing bagging

and randomization seems to be the ideal methodology

for such decision trees.

5.3. Real world application

The method described in this paper was applied to

real data concerning acoustic emission testing of pres-

sure vessels. 4 The data consists in 37 examples de-

scribed by 27 features. Each training pattern

corresponds to a cluster of acoustic emission signals,

and belongs to one of three classes: minor, major, or
critical source. Two different experts were asked to as-

sess, for each training example, the degree of possibility
4 These data were collected by the Centre Technique des Industries

M�ecaniques (CETIM) in Senlis, France.
TED
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that this example belongs to each class, resulting in two

different possibility distributions for each example. Fig.

4 displays the data in a two-dimensional subspace of the

feature space, together with possibilistic labels respec-

tively provided by each expert. As mentioned previ-
ously, a possibility measure is known to be formally

equivalent to a consonant belief function. Hence, pos-

sibilistic labels are a special case of evidential labels

considered in this paper. Three training sets were con-

sidered: the data labeled by each of the two experts (E1

and E2), and the data E1þ2 labeled by a conjunctive

combination of the labels provided by the two experts

(by taking the minimum of the possibility distributions,
and normalizing). The possibilistic labels were trans-

formed in belief functions and used as explained in

Section 3.1.

For these experiments, we used 10-fold cross-valida-

tion to optimize the value of the parameters and to

evaluate the performance of the proposed method. For

each training set, we considered two learning strategies.

In the first one, the possibilistic labels were transformed
into hard labels by selecting only, for each example, the

class with the highest possibility. In the second strategy,

possibilistic labels are transformed into evidential labels

and used for learning. The results are summarized in

Tables 3 and 4 (strategy 1) and (strategy 2) for the four

methods (initial BDT, bagged version, randomized

version and mixed version). For strategy 1 (training with

hard labels), the misclassification error rate E was used
as a performance criterion. For strategy 2 (training with

possibilistic labels), the criterion L defined in Eq. (27)

was investigated.

According to these tables, we can see that:

• training with possibilistic labels tends to decrease the

error rate, which is an indication that our method

succeeds in using more refined information than just

hard labels (similar results were reported in [6,7,33]

with different data sets);

• combining the expert information tends to improve

the results, whatever the method used. This shows
that collecting information from several experts

may be useful when the class of training patterns

can only be assessed subjectively;

• bagged, randomized and mixed versions of BDT im-

prove significantly the performances of the Belief

Decision Tree.
614

615

616
6. Conclusion

In this paper, the aggregation of Belief Decision Trees

with several machine learning techniques has been

investigated. Such trees allow us to quantify the uncer-

tainty of the prediction and process learning sets whose

labeling has been specified with belief functions for K-
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Table 3

Strategy 1: Test error rates E; Learning with hard labels for the four

methods

Data set E BAG RAND MIX

E1 0.32 0.29 0.28 0.25

E2 0.35 0.32 0.32 0.29

E1þ2 0.33 0.29 0.29 0.28

Table 4

Strategy 2: Test errors rates based on loss function L (except first

column); Learning with possibilistic labels four the four methods

Data set E L BAG RAND MIX

E1 0.28 0.39 0.37 0.35 0.34

E2 0.29 0.41 0.40 0.40 0.33

E1þ2 0.27 0.37 0.35 0.37 0.34
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CORREclass pattern recognition problems. Bagged, randomized

and mixed versions of these belief decision trees have

been introduced in a general Multiple Classifiers System.

Aggregation of the BDT’S is realized at the belief

function level using a specific weighted operator. This

allows us to take into account uncertainty of each

classifier involved in the system. The proposed method

seems to be richer than aggregating classification rules at
decision level and allows us to have a more certain

prediction. After a study on parameters values, we have

demonstrated, with several simulations, that the use of

Bagging and Randomization allows further reductions

of classification error rates for different reject rates.
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The aim of this Appendix A is not to give a detailed
account of credal inference (i.e., statistical inference

based on belief functions), but only to summarize a

theoretical result obtained by Smets [31] and its exten-

sion given in [6,33]. The problem considered here is to

derive the belief function concerning the outcome of a

Bernoulli trial, having observed a sequence of past

outcomes. For example, let us consider a coin toss game

with the two events x1 (head) and x2 (tail) leading to the
set X ¼ fx1;x2g. The available information consists in

observed outcomes from n independent trials. Given

that you have observed n1 heads and n2 tails (so,

n1 þ n2 ¼ n), the belief function derived by Smets in [31]

is defined as follows:

mX½n1; n2�ðfx1gÞ ¼
n1

nþ 1
; ðA:1Þ

mX½n1; n2�ðfx2gÞ ¼
n2

nþ 1
; ðA:2Þ

mX½n1; n2�ðXÞ ¼ 1

nþ 1
: ðA:3Þ

This belief function converges to the true probability
when n tends to infinity. The method described in [31]

can, in principle, be generalized to more than two out-

comes. However, the calculations become quite cum-

bersome, and the counterparts of (A.1)–(A.3) in the

general case are not available to date.

Let us suppose now that we have performed n inde-

pendent Bernoulli experiments but that the outcomes

could only be partially observed (for example, the urn
experiment was observed at a distance, so that the re-

sults of some trials could only be partially observed). Let

mX
i be the basic belief assignment describing one’s belief

concerning the result of experiment i, and mX the basic

belief assignment quantifying one’s belief regarding the
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outcome of the next experiment. Based on the results in

[31], it was shown in [6,33] that mX is given by:

mXðfx1gÞ ¼
X

ðj;kÞjjþk6 nðtÞ
ajk

j
jþ k þ 1

;

716
717
718
719
mXðfx2gÞ ¼
X

ðj;kÞjjþk6 nðtÞ
ajk

k
jþ k þ 1

;

720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
mXðXÞ ¼
X

ðj;kÞjjþk6 nðtÞ
ajk

1

jþ k þ 1
;

where ajk is defined as:

ajk ¼
X

fI1;I2;I3g

Y
i12I1

mX
i1
ðfx1gÞ

 
�
Y
i22I2

mX
i2
ðfx2gÞ

�
Y
i32I3

mX
i3
ðXÞ
!
;

where fI1; I2; I3g ranges over all partitions of f1; . . . ; ng
such that jI1j ¼ j and jI2j ¼ k. Note that these expres-

sions are similar to Eqs. (A.1)–(A.3) when the basic

belief assignments mX
i are derived from precise obser-

vations.
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