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Abstract— Segmentation of thoracic computed tomography
(CT) images is an important step in many medical imaging appli-
cations. This paper presents an automatic scheme for identifying
the patient’s contour, the lungs, the trachea and the spinal canal
on a set of two-dimensional (2D) thoracic CT images. Three
different methods were proposed for the segmentation process.
An adaptive thresholding method was used for the delineation of
the external skin surface of the patient. A 3D credal filter, based
on the belief functions theory, was implemented for the lungs
and the spinal canal segmentation. Because of the differences
between the organs shape, the filter parameters were different.
For the lung, no direction was privileged, whereas for the spinal
canal the perpendicular direction of the transverse slices was
privileged in order to reinforce the inter-slice contribution. A 3D
region growing method was used for the trachea segmentation.
Segmentation results on a set of 2D CT images are presented and
allows to highlight the performances of the proposed methodol-
ogy. The contours were evaluated by an experimented radiation
oncologist.

I. I NTRODUCTION

The identification and delineation of organs at risk (lung,
spinal cord, oesophagus, heart) are essential steps in the
planning of radiation treatment for lung cancer. The regions
occupied by these structures must be defined accurately to
ensure that therapeutic goals are satisfied. Modern treatment
planning systems (TPSs) allow users to draw contours around
regions of interest based on transverse computed tomography
images. Several semi automatic tools have been developed
contouring the patient’s body, the lung and the spinal cord, but
with a manual adjustment. For the other organs, this process is
largely carried out by hand. It is time-consuming and subject
to user variability. Most of CT images segmentation relies
on thresholding of CT Hounsfiels units (HU) using fixed or
chosen threshold values. This approach gives relatively good
results for those structures that are completely enclosed by
tissues with HU values significantly different from their own.
For structures that are only partially surrounded by tissues
with significantly different HU values, thresholding techniques
often fail.

Several authors have developed tools for computer assisted
segmentation of medical images. Hu et al. [1] proposed a
completely 2D automatic method for lung segmentation on CT
images using an adaptive thresholding technique. Hedlund et
al. [2] also presented two methods for lung segmentation. The
first one is based on finding the steep density gradient between
low density of lung (HU less than -600 HU) and high density
of chest wall (HU higher than -550 HU), by an edge tracking
method. The principle of the second method is to select all
voxels contiguous (i.e. supposed as lung voxels) with a single
starting point in the lung that are also within a specified HU
range and have an average difference of less than a specified
value. Kiraly and al. [3] proposed two algorithms for the
trachea segmentation on CT images: i) an adptative region-
growing method and ii) a hybrid algorithm that uses both
region growing and mathematical morphology. The aim was
to obtain a virtual bronchoscopy. More recently, the evidence
theory [4], [5], [6], [7] was used for brain tissues segmentation
on Magnetic Resonance Imaging (MRI) [8], [9], [10], [11], but
not on pulmonary CT imaging to our knowledge.

In this paper, we describe an automatic scheme for
identifying the contour of the patient’s body, the right and
left lungs, the trachea and the spinal canal on pulmonary
CT images for external radiotherapy purpose. The proposed
methodology is based on three main algorithms to segment
such a variety of organs shapes. Firstly, to define the
body contour, an adaptative thresholding followed by a
morphological opening method was used (section II-A).
Secondly, inside this volume of interest, i) a 3D credal filter,
based on the belief functions theory, (section II-B) was
applied for lungs and spinal canal segmentation, ii) a 3D
region growing algorithm (section II-C) was used for the
trachea segmentation. Segmentation results are presented on
2D thoracic CT images to highlight the performance of this
methodology (section III).



II. M ATERIAL AND METHODS

A. Patient’s contour delineation

The goal of this step is to determine the external skin
surface. The obtained volume of interest makes it possible
to decrease largely the execution time while increasing the
segmentation precision. All "useless" information is isolated
for future calculation. Rather than using a fixed threshold value
to define the body contour, we used the adaptive thresholding
method proposed by Hu et al. [1]. Morphological operations
were then applied for improving the body contour definition.

1) Adaptive thresholding: The segmentation threshold is
selected through an iterative procedure. LetT i be the seg-
mentation threshold at stepi. To choose a new segmentation
threshold,T i is applied to the image to separate high density
(HD) voxels (soft tissues and bone structures) from low density
(LD) voxels (lungs, trachea and air surrounding the body). Let
µh andµl be the mean gray-level of HD voxels and LD voxels
after segmentation with thresholdT i. Then the new threshold
for stepi + 1 is obtained using:

T i+1 =
µh + µl

2
. (1)

This iterative threshold update procedure is repeated until there
is no change in the threshold, i.e.,T i+1 = T i.

2) Morphological operations: During the previous step,
some voxels that don’t belong to the patient are labeled as
HD, for instance, the examination table where the patient is
lying during the CT acquisition. On transverse slices, the table
corresponds to a very fine structure. It was removed by a set
of 8 "opening" morphological operations [12] with a circle as
filter of radius 1 pixel.

B. Segmentation of lungs and spinal canal

In this step, the 3D credal filter, based on the belief
functions theory (BFT) [4], was performed for lungs and spinal
canal segmentation. BFT provides an interesting framework to
aggregate evidence of multiple information sources (i.e. neigh-
borhood voxels). BFT deals with uncertainty and imprecision
in three levels: i) representing evidence by focal elements and
masses, ii) combining evidence by the Dempster’s rule, and
iii) making decisions.

Firstly, aK-means clustering algorithm [13] is used in order
to performed a pre-segmentation. Then a 3D filter exploits the
results of the pre-segmentation to compute the membership
degree from spatial neighbors using belief functions [5], [6].
Formally, the segmentation of a volumic imageI defined on
a set of voxelsV = {V1, . . . , VN} is a partition ofV in non-
empty disjoint subsetsRk for k = 1, 2, · · · ,K called regions
containing connected voxels. The partitionV verifies V =⋃K

k=1Rk.
The segmentation principle consists in clustering CT data

viewed as voxels in the volumic images. A regionRk is
considered as a set of connected voxels belonging to the same
classωk in the frame of discernmentΩ which is defined as a
finite set of hypothesesωk for k = 1, 2, · · · , K. In order to

quantify the membership degree for each voxel in the volume,
the frame of discernmentΩ was defined by a semi-supervised
methodology. The number of classes (i.e. 3D regions) is
manually adjusted by the user while the clusters parameters
are extracted using aK-means clustering algorithm [13]. Each
classωk ∈ Ω can be represented by its center of gravityCk

defined as:

Ck = C(ωk) =
1
|ωk|

|ωk|∑

i=1

xi (2)

wherexi is the Hounsfield units of voxelVi. In this equation,
|ωk| represents the cardinality (number of voxels) of class
ωk after the clustering algorithm. ThisK-means clustering
algorithm obtain unsatisfactory results because it does not
take into account the spatial information contained in CT
images. Thus, a credal filter is applied in order to improve
the segmentation results.

Details of 3D credal filter are given in case of voxelV
with its corresponding neighborsΦ(V )1. According to Ω,
a basic belief assignment (bba)mi is first built for each
voxel Vi belonging to the neighbors of the studied voxelV
(Vi ∈ Φ(V )). This function quantifies the degree of belief
concerning the membership of the voxelV to a class (region)
in Ω. Each bbami is thus related to the frame of discernment
Ω previously defined withK-means algorithm. We chose
to compute bbami associated to voxelVi following the
relationships:

mi({ωk}) = α
′
i exp[−γ(di,k)] (3)

mi(Ω) = 1− α
′
i exp[−γ(di,k)] (4)

wheredi,k is the Euclidean distance between the gray level of
voxel Vi and class centerCk. The degree of belief allocated to
singletonωk is just anα

′
i-attenuation of the distance between

the gray level of the studied voxelVi and center of the class
ωk. The value ofα

′
i can be computed using:

α
′
i = αi.β (5)

where αi is selected in [0,1] and adjusted according to the
distance between the voxelVi and voxel V we want to
classify (i.e., more the source is near and more it will be
reliable). β is an attenuation coefficient which takes into
account the inter-slice distance information. For each voxel
V , bba’s corresponding to each neighbor are then aggregated
to obtain an unique bbam⊕ defined onΩ using Dempster’s
rule of combination [4]. This function can be computed using:

m⊕ =
⊕

Vi∈Φ(V )

mi. (6)

The fusion of all voxelsVi located in the neighborhood of
V allows to take into account the weighted opinions on the
membership of the voxelV in Ω. Finally, the decision to

1Application of a 3D filter for a voxelV takes into account information
resulting from its 26 neighbors: filter size3×3 for slicen−1 (9 neighbors),
n (8 neighbors),n + 1 (9 neighbors)



assign the voxelV to a class inΩ is taken while analyzing
the pignistic probability [7] obtained using equation:

BetP (ωk) =
∑

A⊆Ω,ωk∈A

m⊕(A)
|A|.(1−m⊕(∅)) (7)

where |A| is the cardinality ofA. The maximum value of
BetP is taken for decision making.

C. Trachea segmentation

A 3D region growing algorithm [3] was chosen and im-
plemented for segmentation of the trachea. Firstly, a seed
point belonging to the trachea is manually selected. The initial
segmented region consists in this single voxel. The region is
then iteratively expanded by checking if any adjacent voxels
to the region satisfy a connectivity criteria2. When the process
stops to include new voxels, the result is a contiguous region
of connected voxels that all satisfy the pre-defined criteria.
We decided to use a 6-connected region3. In this way, the
algorithm progressively fills the trachea, including more and
more voxels, and finally include the entire trachea.

III. R ESULTS AND DISCUSSION

The performances of our methodology were evaluated on
thoracic computed tomography images and illustrated on one
patient. The acquisition of the entire thorax was performed
under free breathing, in treatment position without any in-
traveinous contrast administration. The 3D pulmonary volume
corresponded to a stack of 64 contiguous 2-D transverse slices
of 512 × 512 voxels (slice thickness: 5mm and voxel size:
0.75 mm). The contours were evaluated by an experimented
radiation oncologist. The results are presented in case of three
different slices (Fig. 1 top). The first one (a) is located at the
superior level of lung (under the clavicles), the second one
(b) at the median part of lungs (at the level of the tracheal
bifurcation), while the third one (c) is under the diaphragm.

A. Patient’s contour delineation

The patient’s contour definition was carried out using the
adaptative thresholding algorithm followed by the morphologi-
cal opening method. The first threshold valueT 0 was arbitrary
selected to 0. The number of iterations was 56, and the finalµh

andµl values were−8.68 HU and−973.32 HU respectively.
The corresponding contour is presented Fig. 1 for the 3 slices
(bottom). The analysis of segmented images shows the good
performances of the implemented method. We can note:
• The good delineation of the external skin surface by using

an arbitrary first threshold value which was very different
from the final threshold value (i.e. 0 HU vs -473 HU).

• The examination table, on which the patient was lying,
was almost completely removed except on some slices,
in spite of the fact that it has a HU value of the same
order of magnitude as that of soft tissues.

2The simplest connectivity criteria is simply to accept very dark regions,
i.e. growing when the level was below than a threshold levelT .

3Voxels could be connected in 6 directions: up, down, north, east, south,
west.

Fig. 1. CT thoracic image segmentation of body, lungs and trachea: (a) Slice
17, (b) Slice 27, (c) Slice 39.

B. Lungs and spinal canal segmentation

For lung and spinal canal segmentation, the 3D credal filter
was used. For the lungs, the filter was applied on the volume of
interest defined during the patient’s contour definition (darkest
regions on images of Figure 1). Whereas, it was applied on a
cubic volume, including the spinal column for the spinal canal
segmentation. Each time, the voxels classification concerned
2 classes, the volume of interest (i.e. the lung or the spinal
canal) and the other anatomical structures. Because of the
differences between the two organs shape, the 3D credal filter
parameters were different. For the lungs, there is no privileged
direction, whereas for the spinal canal the main direction is
perpendicular to the transverse 2D-slices. Thus, the inter-slices
contribution must be promoted. The following parameters for
3D credal filter were used in case of lungs segmentation:
α
′
i = 0.9 for slice n, α

′
i = 0.135 for slices n − 1 and

n + 1, γ = 0.05, filter size =3 × 3 andΩ = {−850,−550}.
With these adjustments, slicesn− 1 andn+1 are discounted
and have a weak contribution concerning the decision made
for slice n. Mean values for the classes centers are obtained
using theK-means algorithm as explained in section II-B. The

Fig. 2. CT thoracic image segmentation of spinal canal: (a) Slice 10. (b)
Slice 11. (c) Slice 12.



segmentation results are given Fig. 1 for the 3 slices (bottom).
On the other hand, for spinal canal segmentation, parameters

are following:α
′
i = 0.9 for slicen, α

′
i = 0.72 for slicesn−1

and n + 1, γ = 0.05, filter size =5 × 5 and Ω = {50, 80}.
To illustrate the influence of the high contribution of slices
n − 1 and n + 1 on the spinal canal segmentation of slice
n, an example of three consecutive CT slices are given on
top of Fig. 2. The corresponding segmentation is given on
the bottom of the same figure. It’s obvious that the bone
structures surrounding the spinal canal are very different on
the CT slices. Bone structure doesn’t surround the spinal
canal completely, whereas on segmented slices, the spinal
canal region is totally surrounded by what we can call a
"reconstructed bone structure".

From the segmented images analysis, we can note the
good performances of the implemented method showing its
ability to modulate the 3D information coming from the
neighborhood voxels as well as the neighborhood slices (n−1
and n + 1). The credal filter permits to reduce connection
risks between trachea and lung when they are very close, and
between the left and right lungs at the anterior or posterior
junctions (see an example slice (b) on Fig. 1). The method
allows an accurate spinal canal segmentation.

C. Trachea segmentation

For the trachea segmentation, the 3D region growing al-
gorithm was implemented. The seed point is first manually
selected at the upper part of the trachea, since the size makes
it easy to identify. The threshold valueT was then selected
to −270 HU. The number of iterations to treat23 slices
(from slice 1 to slice 23) was12935. The bottom part of
Fig. 1 illustrates the good performances of the algorithm,
in particular, its ability to separate the right and left parts
of the trachea under the tracheal bifurcation (see slice b).
For this 3D region growing algorithm, future work concerns
the automatic adjustment of the threshold. Integration of
some morphological information concerning the anatomical
structure to be segmented is also investigated.

IV. CONCLUSION

In this article, a semi-automatic segmentation scheme was
proposed for identifying the patient’s contour, the lungs, the
spinal canal and the trachea on a set of two-dimensional (2D)
thoracic CT images.

Because of the difference between organs shape, three
different methods were proposed for the segmentation process.
An adaptive thresholding method was used for the delineation
of the external skin surface. A 3D credal filter, based on the
belief functions theory, was implemented for the lungs and the
spinal canal segmentation. Two sets of filter parameters were
used. For the lung, no direction was privileged, whereas for the
spinal canal the perpendicular direction of the transverse slices
was privileged in order to reinforce the inter-slice contribution.
Finally, a 3D region growing method was used for the trachea
segmentation.

Future works are concerned with automatic adjustment of
the 3D credal filter parameters according to the anatomical
constraints associated to the volumes to be segmented. This
can be done using additional knowledge given by the experts.
The credal filter can be extended at continuous level (while
considering continuum instead finite set of classes) using
specific belief functions [14]. This is under investigation. Im-
provements must also be carried out for a complete elimination
of the examination table during the patient’s contour delin-
eation. Another important issue is to validate the presented
methodology using a series of patients according to specific
criteria to be determine by radiation oncologists.
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