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8 Abstract

9 Within the framework of evidence theory, data fusion consists in obtaining a single belief function by the combination of several

10 belief functions resulting from distinct information sources. The most popular rule of combination, called Dempster’s rule of

11 combination (or the orthogonal sum), has several interesting mathematical properties such as commutativity or associativity.

12 However, combining belief functions with this operator implies normalizing the results by scaling them proportionally to the

13 conflicting mass in order to keep some basic properties. Although this normalization seems logical, several authors have criticized it

14 and some have proposed other solutions. In particular, Dempster’s combination operator is a poor solution for the management of

15 the conflict between the various information sources at the normalization step. Conflict management is a major problem especially

16 during the fusion of many information sources. Indeed, the conflict increases with the number of information sources. That is why a

17 strategy for re-assigning the conflicting mass is essential. In this paper, we define a formalism to describe a family of combination

18 operators. So, we propose to develop a generic framework in order to unify several classical rules of combination. We also propose

19 other combination rules allowing an arbitrary or adapted assignment of the conflicting mass to subsets. � 2002 Published by

20 Elsevier Science B.V.

21 Keywords: Data fusion; Theory of evidence; Rules of combination; Conflict

22 1. Introduction

23 Information fusion has been the object of much re-
24 search over the last few years [1–11]. Generally, it is
25 based on the confidence measure theory (possibility
26 theory, evidence theory, probability theory and fuzzy set
27 theory) and has the advantage of:
28 • using redundant information,
29 • using the complementarity of the available informa-

30 tion,
31 • achieving more reliable information,
32 • improving the decision making.
33 Data fusion is used in many application fields, such as
34 multi sensor fusion [12,13], image processing and anal-
35 ysis [4–7,11,14,15], classification [16–18] or target

36tracking [19]. It takes into account heterogeneous in-
37formation (numerical or symbolic) which is often im-
38perfect (imprecise, uncertain and incomplete) and
39modeled by means of sources which have to be com-
40bined or aggregated. In the framework of evidence
41theory, information fusion relies on the use of a com-
42bination rule allowing the belief functions for the dif-
43ferent propositions to be combined. The basic rule of
44combination is Dempster’s rule of combination (or-
45thogonal sum). It needs a normalization step in order to
46preserve the basic properties of the belief functions. In
47[20], Zadeh has underlined that this normalization in-
48volves counter-intuitive behaviours. In order to solve the
49problem of conflict management, Yager [21], Dubois
50[22] and Smets [23] and more recently Murphy [24] have
51proposed other combination rules. However, these rules
52have more or less satisfactory behaviours. In particular,
53Dubois’ rule or Yager’s rule of combination hold that
54the conflicting mass must be distributed over all subsets.
55Smets proposes that the conflicting mass results from
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56 the non-exhaustivity of the frame of discernment. We
57 propose another approach, in which we define a gener-
58 alized framework for the fusion of information sources
59 by means of a generic axiomatic. This framework en-
60 ables a large family of combination rules to be obtained.
61 This paper is organized as follows. The basic concepts
62 of evidence theory are first briefly introduced (Section 2)
63 including the problem of conflict in Dempster’s rule of
64 combination. In Section 3, we define the generic
65 framework allowing classical combination operators to
66 be unified and we propose a family of new combination
67 rules. Finally, some methods to determine weighting
68 factors for the conflicting mass distribution process for
69 each proposition implied in the conflict are proposed
70 (Section 3.3.2). Tests are given in Section 4.

71 2. Background

72 Evidence theory is initially based on Dempster’s work
73 [25] concerning lower and upper probability distribution
74 families. From these mathematical foundations, Shafer
75 [26] has shown the ability of the belief functions to
76 modelize uncertain knowledge. The usefulness of belief
77 functions, as an alternative to subjective probabilities,
78 was later demonstrated axiomatically by Smets [27] and
79 Smets and Kennes [28] with the transferable belief model
80 (TBM) giving a clear and coherent interpretation of the
81 underlying concept of the theory.

82 2.1. Knowledge model

83 Evidence theory first supposes the definition of a set
84 of hypotheses H called the frame of discernment, defined
85 as follows:

H ¼ fH1; . . . ;Hn; . . . ;HNg: ð1Þ
87 It is composed of N exhaustive and exclusive hy-
88 potheses. From the frame of discernment H, let us de-
89 note 2H, the power set composed with the 2N

90 propositions A of H:

2H ¼f;; fH1g; fH2g; . . . ; fHNg; fH1 [ H2g;
� fH1 [ H3g; . . . ;Hg: ð2Þ

92 A key point of evidence theory is the basic belief as-
93 signment (bba). The mass of belief in an element of H is
94 quite similar to a probability distribution, but differs by
95 the fact that the unit mass is distributed among the el-
96 ements of 2H, that is to say not only on the singletons Hn

97 in H but on composite hypotheses too. The belief mj

98 assigned to an information source Sj is thus defined by

mj : 2
H ! ½0; 1�: ð3Þ

100 This function verifies the following properties:

mjð;Þ ¼ 0; ð4Þ

X
A�H

mjðAÞ ¼ 1: ð5Þ

103The mass mjðAÞ represents how strongly the evidence
104supports A which, in the case of a disjunction of hy-
105potheses, has not been assigned to a subset of A because
106of insufficient information. This mass can be re-assigned
107more precisely to the subsets of A if additional infor-
108mation is available. Each subset A � H such as
109mjðAÞ > 0 is called a focal element of m. Let us denote
110Fj the set of the focal elements associated to a belief
111function mj. From this bba, a belief function Belj and a
112plausibility function Plj are defined, respectively, as

BeljðAÞ ¼
X
B�A

mjðBÞ ð6Þ

114and

PljðAÞ ¼
X
A\B6¼;

mjðBÞ: ð7Þ

116The quantity BeljðAÞ can be interpreted as a measure
117of one’s belief that hypothesis A is true. The plausibility
118PljðAÞ can be viewed as the total amount of belief that
119could be potentially placed in A. Note that functions mj,
120Belj and Plj are in one-to-one correspondence [26], and
121can be seen as three facets of the same piece of infor-
122mation.
123In evidence theory, one of the main difficulties lies in
124modelling the knowledge of the problem by initializing
125the belief functions mj as well as possible. Generally, the
126model depends on the application. In [29], Appriou
127proposes two models in order to manage the uncertain
128learning in the framework of evidence theory. These
129models are consistent with the Bayesian approach when
130the belief mass is only allocated to singletons. Other
131models, also based on likelihood functions, have been
132proposed [30–32]. Another method based on the use of a
133neighbourhood information was introduced by De-
134noeux [17,18,33,34].

1352.2. Dempster’s rule of combination

136In the case of imperfect data (uncertain, imprecise
137and incomplete), fusion is an interesting solution to
138obtain more relevant information. Evidence theory of-
139fers appropriate aggregation tools. From the basic belief
140assignment denoted mj obtained for each information
141source Sj, it is possible to use a combination rule in
142order to provide combined masses synthesizing the
143knowledge of the different sources. These belief masses
144can then be used by a decision process with the benefit of
145the whole knowledge contained in the belief functions
146given by each source.
147Dempster’s rule of combination [26] is the first one
148defined within the framework of evidence theory. Using
149the rule implies that the independence condition for the
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150 sources to be combined must be respected. Dempster’s
151 rule of combination, the so-called orthogonal sum, is
152 commutative and associative. Let us denote m�, the
153 belief function resulting from the combination of J in-
154 formation sources Sj defined as

m� ¼ m1 � � � � � mj � � � � mJ ; ð8Þ
156 where � represents the operator of combination. With
157 two information sources S1 and S2, the combination rule
158 is defined as

m�ðAÞ ¼
m\ðAÞ

1� mð;Þ 8A � H; ð9Þ

160 where m\ corresponds to the conjunctive rule of com-
161 bination defined by

m\ðAÞ ¼
X

B\C¼A

m1ðBÞ � m2ðCÞ 8A � H; ð10Þ

163 and where the mass mð;Þ assigned to the empty set is
164 defined by

mð;Þ ¼
X

B\C¼;
m1ðBÞ � m2ðCÞ: ð11Þ

166 In Eqs. (9) and (11), the coefficient mð;Þ reflects the
167 conflict between the two sources S1 and S2. Assuming
168 the normality of the bbas (mð;Þ ¼ 0), the use of this rule
169 is possible only if m1 and m2 are not totally conflicting,
170 i.e., if there exist two focal elements B and C of m1 and
171 m2 satisfying B \ C 6¼ ;. This rule verifies some inter-
172 esting properties and its use has been justified theoreti-
173 cally by several authors [35–37] according to specific
174 axioms. However, in some situations, this operator
175 cannot be used. It is the case when:
176 • the independence constraint [38–41] of the informa-

177 tion sources is not respected. Indeed, the combination

178is not idempotent and its use would reinforce abu-
179sively the propositions supported by the bba,
180• the sources are not perfectly reliable and when the

181mass function model is also imprecise, a conflict
182mð;Þ appears. The normalization coefficient depends
183on this conflict and so induces a combination rule
184sensitivity to small imprecisions of the mass functions
185as Zadeh proved [20]. We give some illustrations of
186such a behaviour in Section 4.1.

1872.3. Conflict origins and solutions

188Conflict management in belief functions has been
189already studied in the past. But why does the evidence
190conflict? In Section 2.3.1, we present the main origins of
191the conflict. Some classical solutions are given in Section
1922.3.2.

1932.3.1. Origins: why evidence conflicts
194There are three main reasons why a conflict appears
195when combining evidence. The first one corresponds to
196an aberrant measurement given by a sensor. In fact, an
197abnormal measurement (denoted by outliers in pattern
198recognition applications) can generate a conflicting mass
199mð;Þ during the combination step. This is often due to:
200• a sensor defect during the acquisition step,
201• a poor calibration of the sensor during the learning

202phase. If the sensor has a correct behaviour, this sit-
203uation can correspond to a non-exhaustive frame of
204discernment (an unknown class for example).
205A second reason relies on the belief function model.
206Thus, imprecise model of the belief functions may pro-
207vide a conflict. In fact, most of the models for deter-
208mining basic belief assignments are derived from

Fig. 1. Conflict vs. number of sources to combine.
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209 neighbourhood information according to a distance [33]
210 or to likelihood functions [26,29]. An inappropriate
211 choice of the metric in the distance-based approaches or
212 a poor estimation of the likelihood functions for the
213 likelihood-based methods can induce variations in the
214 belief functions. Consequently, these variations provide
215 a conflicting mass during the combination.
216 Finally, when the information sources to be aggre-
217 gated are numerous, a conflicting mass can be induced
218 even if these sources agree. For example, let us consider
219 a set of J information sources with the following basic
220 belief assignments:

mjðfH1gÞ ¼ 0:80; mjðfH2gÞ ¼ 0:15; mjðHÞ ¼ 0:05:

222 According to these belief assignments, we can note
223 that the majority of the belief supports the hypothesis
224 H1. Fig. 1 shows the conflicting mass evolution accord-
225 ing to the number of information sources to be aggre-
226 gated. This figure shows that the conflicting mass is
227 approximately 25% when two sources (J ¼ 2) are com-
228 bined and this mass is close to 80% for 10 aggregated
229 sources (J ¼ 10)! These three main reasons plead for an
230 adaptive distribution or assignment of the conflicting
231 mass provided by the combining process.

232 2.3.2. Solutions
233 Several rules of combination have been introduced in
234 order to manage the conflict problem. These solutions
235 can be divided into two main categories corresponding
236 to two strategies for the conflict distribution. The first
237 one includes rules of combination which require reliable
238 information sources (see Section 2.3.2.1), conjunctive
239 operators are used [25,30]. The second family states that
240 one information source tells the truth but without
241 knowing exactly which of them it is (see Section 2.3.2.2).
242 For this second category, the operators have conjunctive
243 and disjunctive behaviours [21,22].
244 2.3.2.1. Combination of reliable sources. As Dempster
245 postulates, Smets supposes that all the information
246 sources are reliable. The idea is that the conflict can only
247 come from a bad definition of the frame of discernment
248 (ill-conditioned frame of discernment). In this case,
249 Smets keeps the conflicting mass mð;Þ and does not use
250 it for normalization. Thus, ; can be interpreted as one or
251 several hypotheses which are not taken into account in
252 the initial frame of discernment. The rule of combina-
253 tion proposed by Smets is thus defined by

mSðAÞ ¼ m\ðAÞ 8A � H;

mSð;Þ ¼ mð;Þ:
ð12Þ

255 Note that a similar approach is proposed by Yager in
256 [21] which rests on the introduction of a new hypothesis
257 in the frame of discernment. The conflicting mass is then
258 given to this new hypothesis. These operators have
259 conjunctive behaviours.

2602.3.2.2. Combination of non-reliable sources. The con-
261flicting mass can be provided by non-reliable informa-
262tion sources. This point of view has been introduced by
263Yager [21] and by Dubois and Prade [22]. Yager pos-
264tulates that the frame of discernment is exhaustive
265(closed-world assumption). Yager’s idea consists in as-
266signing the conflicting mass mð;Þ to the whole set H. The
267resulting mass, denoted mY , for the combination of two
268information sources S1 and S2 is obtained with the fol-
269lowing equations:

mY ðAÞ ¼ m\ðAÞ 8A � H;

mY ðHÞ ¼ m\ðHÞ þ mð;Þ:
ð13Þ

271The combination operator proposed by Dubois and
272Prade [22] can be explained as follows. Assume the
273source S1 supports the subset B with a mass of belief
274m1ðBÞ and the source S2 supports C with a mass of belief
275m2ðCÞ. When the intersection of subsets B and C is
276empty, the minimum specificity principle can be applied.
277According to this principle, the resulting mass
278m1ðBÞ � m2ðCÞ is then assigned to the subset B [ C. The
279rule of combination proposed by Dubois and Prade is
280then defined by

mDðAÞ ¼ m\ðAÞ þ
X

B[C¼A
B\C¼;

m1ðBÞ � m2ðCÞ 8A � H: ð14Þ

282This rule of combination is better adapted and more
283specific than Yager’s rule of combination concerning the
284assignment of the conflicting mass.
285Another way to solve the conflict in the case of non-
286reliable sources is to use discounting coefficients in the
287model. So, let mj be a belief mass given by the source Sj
288and let aj be a coefficient which represents the confi-
289dence degree one has in source Sj. Let us denote maj;j the
290belief mass mj discounted by a coefficient ð1� ajÞ and
291defined as

maj;jðAÞ ¼ ajmjðAÞ 8A � H;

maj;jðHÞ ¼ 1� aj þ ajmjðHÞ:
ð15Þ

293What does it mean? The value assigned to aj leads to
294different interpretations:
295• aj ¼ 0 means a complete calling in question of the re-

296liability of the source Sj,
297• aj ¼ 1 means a total confidence in Sj.
298When we are full confident in the reliability of Sj, the
299information provided by this source is not supposed to
300generate any conflict when combined with the infor-
301mation given by the other sources. The coefficient aj is
302then equal to 1 and the belief function is thus not
303modified. Conversely, if one supposes that one source Sj
304is not reliable, it may provide conflicting information
305when it is combined with other sources. By introducing
306a coefficient aj ¼ 0, the belief function mj associated to
307the source Sj becomes a belief function of total igno-
308rance (maj;jðHÞ ¼ 1) and so a neutral element for
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309 Dempster’s rule of combination. So, discounting is
310 useful for managing the source influences according to
311 their reliability before aggregation. Several methods
312 have been developed in order to define the discounting
313 coefficients [42,43]. The main problem with this kind of
314 solution in conflict management is finding an appro-
315 priate technique for tuning the discounting coefficients
316 properly.

317 2.3.3. What to do with the conflict?
318 There are several strategies for solving or managing
319 the conflict. In practice, the main question is ‘‘What to
320 do with the conflict?’’. There is no single answer to this
321 question. Different solutions are at our disposal:
322 • the information sources to be combined are perfectly

323 reliable, so we can use either Dempster’s rule of com-
324 bination or Smets’ rule of combination if we are not
325 sure that the frame of discernment is exhaustive,

326 • the information sources to be combined are not reli-
327 able, so we must apply discounting if possible, or
328 use one of the disjunctive rules of combination.

329 Are these combination rules the only ones possible? In
330 the next section, we propose a generic formalism for the
331 combination allowing the rules of combination cited
332 previously to be retrieved and allowing others to be
333 derived.

334 3. Generic framework

335 We propose a generic framework in order to unify the
336 classical combination operators. Furthermore, this
337 framework allows others rules of combination for the
338 assignment of the conflicting mass to be defined. The
339 idea defended here is to assign the conflicting mass with
340 weighting factors on the non-concordant hypotheses or
341 possibly on the composite hypotheses (disjunctions).
342 These weighting factors can be defined by means of
343 expert knowledge or by means of cost functions. We
344 focus on the problem of looking for a relevant weighted
345 assignment of the conflicting mass on subsets A.

346 3.1. Presentation

347 The aim of these combination rules is to distribute the
348 conflicting mass mð;Þ on a set of propositions denoted
349 P. Part of the mass mð;Þ is assigned to each subset
350 A � P according to a weighting factor called wðA;mÞ
351 with m ¼ fm1; . . . ;mj; . . . ;mJg. This weighting factor
352 can be a function of the considered subset A and subsets
353 which have caused the conflict. So, the total mass after
354 aggregation for a subset A is the sum of two masses and
355 is expressed as follows:

mðAÞ ¼ m\ðAÞ þ mcðAÞ 8A � H: ð16Þ

357In Eq. (16), the first term, m\ðAÞ, corresponds to the
358conjunctive rule of combination. The second one, de-
359noted mcðAÞ, is the part of the conflicting mass assigned
360to the subset A. It can be written as follows:

mcðAÞ ¼ wðA;mÞ � mð;Þ 8A � P;

mcðAÞ ¼ 0 otherwise
ð17Þ

362with the following constraint:X
A�P

wðA;mÞ ¼ 1 ð18Þ

364so as to respect the property that the sum of mass
365functions must be equal to 1 (see Eq. (5)).
366This generic framework allows Dempster’s rule of
367combination and other proposed by Smets [23], Yager
368[21] and Dubois and Prade [22] to be rewritten. For each
369operator, we need only to define the set P on which the
370conflicting mass must be distributed and the weighting
371factors wðA;mÞ associated to each subset A � P. Three
372ways to obtain the weighting factors are possible:
373• fixing the values of the weighting factors,
374• computing the weighting factors,
375• learning the weighting factors.
376The first way allows Smets’ rule of combination and
377Yager’s rule of combination to be retrieved (see Section
3783.2). The second one allows Dempster’s rule of combi-
379nation and Dubois and Prade’s rule of combination to
380be retrieved (see Section 3.3). Finally, the third approach
381is new and allows an adapted conflicting mass assign-
382ment to be achieved (see Section 3.4).

3833.2. Weighting factors with fixed values

3843.2.1. Classical rules of combination
385According to the equations presented in Section
3862.3.2.1, Smets’ rule can be defined as follows. The set on
387which the conflicting mass is distributed is the empty set
388and so we obtain

P ¼ f;g ð19Þ
390and the weighting factor associated to the empty set is
391equal to 1:

wð;;mÞ ¼ 1: ð20Þ
393The empty set can be viewed as a reject class. A
394similar approach based on the introduction of a new
395hypothesis in the frame of discernment was proposed in
396[44]. The aggregation operator proposed by Smets ver-
397ifies the properties of commutativity and associativity.
398Finally, let us emphasize that in [45], Smets defines the
399a-junctions as a unified framework for purely conjunc-
400tive combination operators and for disjunctive combi-
401nation operators.
402The method proposed by Yager [21] can be defined as
403follows. Indeed, considering that at least one of the
404sources concerned by the fusion process is reliable but
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405 without knowing which one, Yager proposes to assign
406 the mass of conflict to the set H. According to the ge-
407 neric framework previously presented, we obtain a set P
408 given by

P ¼ fHg: ð21Þ
410 The weighting factor wðH;mÞ associated to this set is
411 equal to 1. The conflicting mass is thus placed on H.
412 This method involves the separation of the whole con-
413 flicting mass and furthermore, implies that it partici-
414 pates in the decision process for distinguishing the
415 hypotheses. This rule of combination is commutative
416 but not associative. It is therefore necessary to define an
417 order for the fusion process.

418 3.2.2. Conflict distribution based on an expert valuation
419 The proposed formalism can be useful in the case of
420 additional knowledge given by an expert specialized in
421 the application. In medical fields, target tracking or
422 obstacle detection, non-detection can have important
423 consequences in decision making. In these kinds of ap-
424 plication, the conflicting mass can be assigned to the
425 most cautious hypothesis. As an example, let us consider
426 an obstacle detection system equipped with two distance
427 sensors placed at the front of a car. Suppose a mea-
428 surement is taken and that the information from the two
429 sensors is in conflict (the first sensor says that an ob-
430 stacle is 1 m from the car and the second one says it is 10
431 m away). It is advisable in this case to single out the
432 information which gives the smaller distance in order to
433 avoid putting the driver’s life at risk. Thus, the expert
434 can decide to allocate, by fixing the weighting factors,
435 most of the conflicting mass to one of the subsets. When
436 no additional information can be provided by an expert,
437 one can adopt a cautious strategy consisting in distrib-
438 uting the conflict uniformly or by learning the weighting
439 factors as in Section 3.4.

440 3.3. Computed weighting factors

441 3.3.1. Classical rules of combination
442 Within the proposed generic framework, Dempster’s
443 rule of combination is defined as follows. The set on
444 which the conflicting mass is distributed is H, so:

P ¼ H ð22Þ
446 and the associated weighting factors are defined as fol-
447 lows:

wðA;mÞ ¼ m\ðAÞ
1� mð;Þ 8A � H: ð23Þ

449 So, the rule of combination is then expressed as fol-
450 lows:

m�ðAÞ ¼ m\ðAÞ þ
m\ðAÞ � mð;Þ
1� mð;Þ 8A � H: ð24Þ

452It can easily be seen that it is similar to Eq. (9).
453The distribution of the conflicting mass proposed by
454Dubois and Prade can be considered in the proposed
455formalism. In order to describe this rule of combination,
456we introduce the notion of partial conflicting mass. Each
457information source Sj, with j 2 f1; . . . ; Jg, gives a degree
458of belief to each focal element belonging to Fj. When
459the focal elements are compatible, that is to say when
460the intersections between these subsets in Fj are not
461empty, the mass product assigned to these sets is as-
462signed to the intersection. If the propositions are in-
463compatible, that is to say when their intersection is equal
464to the empty set, a partial conflict denoted m� appears. It
465is expressed as follows:

m� ¼ m1ðA1Þ � m2ðA2Þ � � � �mJ ðAJ Þ
with A1 \ A2 \ � � � \ AJ ¼ ;:

ð25Þ

467The total conflict mð;Þ is the sum of the partial con-
468flicts and is expressed as follows:

mð;Þ ¼
X�

m�; ð26Þ

470where
P�

is a countable sum which depends on the focal
471elements of Fj. So, with this formalism, we are able to
472write the combination principle for two sources as it
473follows.
474Let S1 be a source which supports subset A1 � H with
475the belief mass m1ðA1Þ and let S2 be a source which
476supports the subset A2 � H with a belief mass m2ðA2Þ. If
477the proposition A1 is in contradiction with A2, that is to
478say if A1 \ A2 ¼ ;, although it is impossible to decide
479between the sources, then one of the two propositions
480must be true. The partial conflicting mass m� defined by

m� ¼ m1ðA1Þ � m2ðA2Þ ð27Þ
482is then assigned to the proposition A1 [ A2. In the gen-
483eral case of this kind of combination, we have a prop-
484osition A on which the partial conflicting masses are
485assigned. The set of all the subsets on which the con-
486flicting mass is distributed is defined by

P ¼ fA � H n 9A1 2 F1; 9A2 2 F2; A ¼ A1 [ A2

and A1 \ A2 ¼ ;g: ð28Þ

488Part of the conflicting mass is assigned to the subset
489A � P by means of a weighting factor wðA;mÞ with
490m ¼ fm1;m2g. This weighting factor, in the case of the
491operator of combination considered, is expressed as
492follows:

8A � P wðA;mÞ ¼

P
A1;A2nA1[A2¼A

A1\A2¼;
m�

mð;Þ : ð29Þ

494We can observe that the computation of the weight-
495ing factors does not depend exclusively on propositions
496with which they are associated, but depends on belief
497mass functions which have cause the partial conflicts.

6 E. Lefevre et al. / Information Fusion xxx (2002) xxx–xxx

INFFUS 51

DISK / 8/4/02

No. of pages: 14

DTD 4.3.1/ SPS-N
ARTICLE IN PRESS



UNCORRECTED
PROOF

498 The belief mass functions leading to the conflict allow us
499 to compute that part of the conflicting mass which must
500 be assigned to the subsets in P. We can note that this
501 rule of combination uses a conjunctive approach when
502 the sources agree and a disjunctive approach when evi-
503 dence conflicts. Like Yager’s rule of combination, Du-
504 bois and Prade’s rule of combination is commutative but
505 is not associative.

506 3.3.2. Other solutions for weighting factor computation
507 We have seen that the proposed formalism allowed
508 some of the classical operators of the literature to be
509 retrieved. On the basis of P and the associated weight-
510 ing factors wðA;mÞ for A � P, we can derive other op-
511 erators. In [46], two particular operators have been
512 presented. We have seen above (cf. Section 2.3.2) that
513 we can manage the conflict by means of discounting. We
514 can also obtain relationships between the weighting
515 factors wð:;mÞ and the discounting factors (see Appen-
516 dix A). This demonstrates that conflict management by
517 means of discounting is just a particular case of the re-
518 distribution of the conflicting mass by means of com-
519 puted weighting factors.

520 3.4. Automatic learning of the weighting factors

521 We propose here another way to manage conflicting
522 mass distribution. It is based on an automatic learning
523 of the weighting factors involved in the assignment of
524 the conflicting mass. Before dealing with this approach,

525let us underline a function defined by Smets for decision
526making in the framework of evidence theory.
527Smets and Kennes [28] and Smets [47] define a par-
528ticular probability distribution function, called the pig-
529nistic probability. It is obtained by distributing the belief
530mass mðAÞ equally between the different elements of A.
531So, we have:

8Hn 2 H BetP ðHnÞ ¼
X
A�H

jHn \ Aj
jAj � mðAÞ; ð30Þ

533where j � j represents the cardinal of the considered set.
534We propose a learning of the weighting factors based
535on the use of training set and the minimization of an
536error criterion. This error criterion is defined by the
537mean square error between the pignistic probability
538BetP computed according to both Eq. (30) and the
539membership indicator. The mean square error EMS of
540the training set vectors is defined as follows:

EMS ¼
XI

i¼1

XN
n¼1

½BetP ðiÞðHnÞ � uin�
2
; ð31Þ

542where I is the number of elements, BetP ðiÞ represents the
543pignistic probability of a vector Xi in the learning set and
544uin 2 f0; 1g is the membership indicator of the vector Xi

545to the hypothesis Hn. For example, uis ¼ 1 if the vector Xi

546belongs to the class Hs, and uin ¼ 0 for all n 6¼ s. We then
547determine each weighting factor wðA;mÞ for A � P by
548minimizing the criterion given in Eq. (31).
549In other words, one has I cases in the training set for
550which one knows the class and the basic belief assign-
551ments provided by J sources. For each case, one can

Table 1

Credibility and plausibility functions results for Dempster and Smets rules of combination according to �

Value of � Rule of

combination

Associated weighting factors BelðfH1gÞ BelðfH2gÞ BelðfH3gÞ BelðHÞ PlðfH1gÞ PlðfH2gÞ PlðfH3gÞ

� ¼ 0:1 Dempster wðfH1g;m1;m2Þ ¼ 0:47
wðfH2g;m1;m2Þ ¼ 0:06 0.47 0.06 0.47 0 0.47 0.06 0.47

wðfH3g;m1;m2Þ ¼ 0:47

Smets wð;;m1;m2Þ ¼ 1 0.08 0.01 0.08 0.17 0.08 0.01 0.08

� ¼ 0:01 Dempster wðfH1g;m1;m2Þ ¼ 0:32
wðfH2g;m1;m2Þ ¼ 0:36 0.32 0.36 0.32 0 0.32 0.36 0.32

wðfH3g;m1;m2Þ ¼ 0:32

Smets wð;;m1;m2Þ ¼ 1 0.009 0.01 0.009 0.028 0.009 0.01 0.009

� ¼ 0:001 Dempster wðfH1g;m1;m2Þ ¼ 0:076

wðfH2g;m1;m2Þ ¼ 0:848 0.076 0.848 0.076 0 0.076 0.848 0.076

wðfH3g;m1;m2Þ ¼ 0:076

Smets wð;;m1;m2Þ ¼ 1 0.001 0.01 0.001 0.012 0.001 0.01 0.001

� ¼ 0:0001 Dempster wðfH1g;m1;m2Þ ¼ 0:009

wðfH2g;m1;m2Þ ¼ 0:982 0.009 0.982 0.009 0 0.009 0.982 0.009

wðfH3g;m1;m2Þ ¼ 0:009

Smets wð;;m1;m2Þ ¼ 1 0.001 0.01 0.001 0.01 0.001 0.01 0.001
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552 combine the J basic belief assignments with re-assign-
553 ment of the conflicting mass mð;Þ by means of weighting
554 factors wð:;mÞ to obtain a new mass m. Having obtained
555 the belief assignment after combination, one computes
556 the pignistic probability BetP. The final step consists in
557 comparing BetP to the truth. The weighting factors
558 wð:;mÞ can be obtained by using a technique such as the
559 gradient descent.

560 4. Results

561 We present here several results which describe the
562 behaviour of the weighted combination strategies for the
563 conflicting mass distribution relative to the classical
564 rules of combination. First, a comparison between these
565 rules and our strategy in terms of the resulting belief
566 mass interpretation is proposed (Section 4.1). Finally,
567 results in the field of pattern recognition with weighting
568 factor learning are presented in Section 4.2.

569 4.1. Combination rules and conflicting mass assignment

570 Let us consider the following well-known example.
571 Suppose a murder case with three suspects H1, H2 and
572 H3 and such that H ¼ fH1;H2;H3g is the frame of dis-
573 cernment. Let S1 and S2 be two witnesses who are two
574 information sources each providing two basic belief as-
575 signments m1 and m2 defined, respectively, as

m1ðfH1gÞ ¼ �; m2ðfH1gÞ ¼ 1� k � �;

m1ðfH2gÞ ¼ k; m2ðfH2gÞ ¼ k;

m1ðfH3gÞ ¼ 1� k � �; m2ðfH3gÞ ¼ �

ð32Þ

577with 06 k6 1. These masses represent the degrees of
578belief of each witness about who might be the murderer.
579We present below some results given by the rules of
580combination according to the value of � (see Tables 1–3).
581In this test, k is equal to 0.1. The weighting factors as-
582sociated to each rule of combination are also specified.
583Consider, first, that the information sources are to-
584tally reliable. Table 1 gives the results obtained with
585Dempster’s rule of combination and Smets’ rule of
586combination for different values for �. For Dempster’s
587rule of combination, the belief mass assigned to H2 in-
588creases when � decreases. If the conflicting mass mð;Þ is
589not analyzed, H2 is chosen by the decision making
590process. With Smets’ rule of combination, the belief
591masses are weak and do not allow reliable decision
592making.
593Consider now that the information sources are not
594reliable. The results obtained for the different strategies
595are presented in Tables 2 and 3.
596The first strategy consists in discounting the two
597sources S1 and S2 according to the following discounting
598factor a1 ¼ 0:2 and a2 ¼ 0:8, and then using Dempster’s
599rule of combination. In this case, the source S2 is sup-
600posed to be telling the truth and part of the unit mass is
601assigned to H which represents the amount of uncer-
602tainty. The two other strategies are Yager’s rule of
603combination and Dubois and Prade’s rule of combina-
604tion.
605For the first strategy, the belief mass is a little mod-
606ified according to � because the reliability coefficient of
607the source S1 is weak, so the decision relies mainly on the
608source S2. The weighting factors corresponding to this
609strategy are little modified with respect to the evolution

Table 2

Credibility and plausibility functions results for different rules of combination according to �

Value of � Rule of combination Associated weighting factors BelðfH1gÞ BelðfH2gÞ BelðfH3gÞ PlðfH1gÞ PlðfH2gÞ PlðfH3gÞ

� ¼ 0:1 Discounting and Dempster wðfH1g;m1;m2Þ ¼ 0:61

wðfH2g;m1;m2Þ ¼ 0:08

wðfH3g;m1;m2Þ ¼ 0:125 0.161 0.08 0.125 0.794 0.265 0.31

wðH;m1;m2Þ ¼ 0:184

Yager wðH;m1;m2Þ ¼ 1 0.08 0.01 0.08 0.91 0.84 0.91

Dubois et al. wðH1 [ H2;m1;m2Þ ¼ 0:108
wðH1 [ H3;m1;m2Þ ¼ 0:784 0.080 0.010 0.080 0.82 0.19 0.82

wðH2 [ H3;m1;m2Þ ¼ 0:108

� ¼ 0:01 Discounting and Dempster wðfH1g;m1;m2Þ ¼ 0:677

wðfH2g;m1;m2Þ ¼ 0:082
wðfH3g;m1;m2Þ ¼ 0:051 0.677 0.082 0.051 0.866 0.272 0.241

wðH;m1;m2Þ ¼ 0:189

Yager wðH;m1;m2Þ ¼ 1 0.009 0.01 0.009 0.981 0.982 0.981

Dubois et al. wðH1 [ H2;m1;m2Þ ¼ 0:093

wðH1 [ H3;m1;m2Þ ¼ 0:814 0.009 0.010 0.009 0.891 0.19 0.891

wðH2 [ H3;m1;m2Þ ¼ 0:093
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610 of � and show that most of the conflicting mass is as-
611 signed to H1.
612 For Yager’s rule of combination, the belief mass as-
613 signed to H increases when � decreases. This is illus-
614 trated by the fact that the credibilities are weak and the
615 plausibilities are high. The belief function is weakly
616 specific leading to unreliable decision making.
617 For Dubois and Prade’s rule of combination, the
618 plausibility for H1 and the plausibility for H3 increase
619 when � decreases such that one cannot decide between
620 H1 or H3. The weighting factors corresponding to this
621 strategy are quite stable with respect to � and show that
622 most of the conflicting mass is assigned to H1 [ H3.
623 To summarize, it appears that the classical rules of
624 combination are designed for conflicts with different
625 origins. All these classical rules of combination are
626 perfectly retrieved with the proposed generic framework
627 according to the values of w presented in the third row
628 of Tables 1–3.

629 4.2. Pattern classification

630 We consider hereafter a pattern recognition problem.
631 Basically, this is a problem of decision making under
632 uncertainty. Different classical rules of combination are
633 compared with the strategy based on weighting factors
634 learning in order to illustrate how the classical rules
635 behave in pattern recognition problems.

636 4.2.1. Pattern recognition problem
637 A pattern recognition problem consists in assigning
638 an input pattern x to a class Hn, given a learning set L
639 composed of n patterns xi with known classification.

640Each pattern in L is represented by a p-dimensional
641feature vector xi and its corresponding class label Hi. In
642the last 10 years, several solutions to this problem have
643been proposed, based on the Dempster–Shafer theory of
644evidence. Let us assume that the belief functions are
645derived from the evidential k-NN classifier proposed by
646Denoeux [48]. In this method, a bba is constructed di-
647rectly, using as a source of information the training
648patterns xi situated in the neighborhood of the pattern x

649to be classified. If the k nearest neighbors (according to
650a distance measure) are considered, we thus obtain k
651bba’s that are combined using Dempster’s rule of com-
652bination. The initial method was later refined to allow
653parameter optimization [17]. Each neighbor can be
654viewed as a piece of evidence that influences the belief
655concerning the membership class of x. A belief function
656mi associated to each neighbor i is then defined for all
657n 2 f1; . . . ;Ng as

miðfHngÞ ¼ a/ðdiÞ; ð33Þ

miðHÞ ¼ 1� a/ðdiÞ; ð34Þ

miðAÞ ¼ 0 8A 2 2H n ffHng;Hg; ð35Þ
661where di is the Euclidean distance to the ith neighbor, a
662is a discounting parameter and /ð�Þ is a decreasing
663function defined as /ðdiÞ ¼ exp½�cðdiÞ2�. In this ex-
664pression, c is a positive parameter. The focal elements of
665each belief function mi are singletons of H and H itself.
666The belief functions mi for each neighbor are then ag-
667gregated using Dempster’s combination rule.

Table 3

Credibility and plausibility functions results for different rules of combination according to �

Value of � Rule of combination Associated weighting factors BelðfH1gÞ BelðfH2gÞ BelðfH3gÞ PlðfH1gÞ PlðfH2gÞ PlðfH3gÞ

� ¼ 0:001 Discounting and Dempster wðfH1g;m1;m2Þ ¼ 0:683

wðfH2g;m1;m2Þ ¼ 0:08

wðfH3g;m1;m2Þ ¼ 0:044 0.683 0.083 0.044 0.874 0.273 0.234

wðH;m1;m2Þ ¼ 0:19

Yager wðH;m1;m2Þ ¼ 1 0.001 0.01 0.001 0.989 0.998 0.989

wðH1 [ H2;m1;m2Þ ¼ 0:091
Dubois et al. wðH1 [ H3;m1;m2Þ ¼ 0:818 0.001 0.01 0.001 0.899 0.190 0.899

wðH2 [ H3;m1;m2Þ ¼ 0:091

� ¼ 0:0001 Discounting and Dempster wðfH1g;m1;m2Þ ¼ 0:684

wðfH2g;m1;m2Þ ¼ 0:083
wðfH3g;m1;m2Þ ¼ 0:043 0.684 0.083 0.043 0.874 0.273 0.233

wðH;m1;m2Þ ¼ 0:19

Yager wðH;m1;m2Þ ¼ 1 0.001 0.01 0.001 0.989 0.998 0.989

Dubois et al. wðH1 [ H2;m1;m2Þ ¼ 0:09

wðH1 [ H3;m1;m2Þ ¼ 0:82 0.001 0.01 0.001 0.899 0.190 0.899

wðH2 [ H3;m1;m2Þ ¼ 0:09
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668 4.2.2. Decision rules
669 The decision to classify x as class Hn depends on a
670 decision rule generally based on the plausibility function
671 as defined in Eq. (7) or the pignistic probability as de-
672 fined in Eq. (30).
673 Let A be a finite set of actions defined as
674 A ¼ fa1; . . . ; aLg. If we choose action ai whereas the
675 pattern is of class Hj, we incur a loss kðai jHjÞ. For a
676 basic belief assignment m, we obtain the following ex-
677 pressions for the risk associated with each possible ac-
678 tion a 2 A:

RIða jxÞ ¼
X
A�H

mðAÞmin
H2A

kða jHÞ: ð36Þ

680 Moreover, the risk with respect to the pignistic
681 probability BetP derived from m is equal to

RBetP ða jxÞ ¼
X
A�H

mðAÞ 1

jAj
X
H2A

kða jHÞ: ð37Þ

683 The above considerations lead to different decision
684 rules relying on the principle of the minimization of the
685 expected loss. Thus, according to the above equations,
686 we obtain the following two decision rules:

DIðxÞ ¼ aI with RIðaIÞ ¼ min
a2A

RIðajxÞ ð38Þ

688 and

DBetP ðxÞ ¼ aBet with RBetP ðaBetÞ
¼ min

a2A
RBetP ða jxÞ: ð39Þ

690Details are available in [16]. Assume that the learning
691set is such that it contains patterns from all classes Hn

692with n 2 f1; . . . ;Ng. In the case of a decision rule with
693rejection, the typical actions are the assignment an to
694each class Hn and rejection a0. By considering only the
695plausibility function and the pignistic probability which
696are the most useful, the conditions for rejection are ex-
697pressed as follows [16]:

DI ¼ a0 () max
n¼1;...;N

PlðfHngÞ < 1� k0; ð40Þ

DBet ¼ a0 () max
n¼1;...;N

BetP ðfHngÞ < 1� k0; ð41Þ

700where k0 P 0 is the rejection cost. The classification rate
701depends on the value k0 and on either the plausibility
702function or the pignistic probability. Because the plau-
703sibility and the pignistic probability depend on the belief
704mass m, the classification rate clearly depends on the
705chosen combination as demonstrated in the following
706example.

7074.2.3. Application
708For the following simulations, a learning set L was
709generated using three classes, each containing 100 bidi-
710mensional vectors. Each vector from class Hn was gen-

Fig. 2. Error rate vs. rejection rate for decision making based on the plausibility.
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711 erated using Gaussian distributions. The means of the
712 three distributions were taken as l1 ¼ ð0; 0Þ0, l2 ¼
713 ð2; 2Þ0, l3 ¼ ð10; 10Þ0 and the variance matrices were of
714 the form:

R1 ¼
2 0
0 2

� �
; R2 ¼

2 0
0 2

� �
; R3 ¼

1 0
0 1

� �
:

ð42Þ
716 Let T be the test database made of 250 vectors for
717 each hypothesis Hn generated as for the learning set. In
718 order to compare the different rules of combination, we
719 show the results obtained on the mean of 10 trials. Fig. 2
720 shows the error according to the rejection rate in the
721 case of a decision based on the plausibility function. Fig.
722 3 shows the error rate according to the rejection rate in
723 the case of a decision based on the pignistic probability.
724 The basic belief assignment is carried out according to
725 Eq. (35) with k ¼ 15, a ¼ 0:99 and where cn is the intra-
726 class distance.
727 Let us suppose that three rules of combination are
728 considered respectively:
729 • Dempster’s combination rule,
730 • Yager’s combination rule,
731 • and a combination rule based on the learning of the

732 weighting factors. 2

733Thus, the results show that the weighted combination
734is more accurate than Dempster’s combination rule
735whatever the decision rule. In the case of a decision rule
736based on the pignistic probability, Yager’s rule of
737combination and the weighted combination have similar
738behaviours. This is coherent because the decision rule
739distributes the mass assigned to H among the singletons.

7405. Conclusion

741In this paper, we have presented a generic framework
742for the fusion of information sources modeled by means
743of belief mass functions. From this framework, we re-
744trieve the classical combination operators used in evi-
745dence theory. Furthermore, this generic framework
746allows a family of combination operators to be defined,
747so it is possible to derive different operators based on:
748• the definition of a setP collecting the subsets A where

749the conflicting mass will be distributed,
750• weighting factors denoted wðA;mÞ assigned to each

751subset A � P.
752The relationship between the discounting and the
753weighted combination has been emphasized (see Ap-
754pendix A). Several methods are possible in order to
755obtain the weighting factors. One of these methods de-
756termines the weighting factor by minimizing a mean
757square error and this is possible for pattern recognition
758problems. The method has been checked and compared
759with Dempster’s classical combination rule. The tests
760also show that our approach, as well as being particu-

Fig. 3. Error rate vs. rejection rate for decision making based on the pignistic probability.

2 A validation database is built in the same way as the test database.

It enables the values of the weighting factors wðA � P;mÞ with

m ¼ fm1; . . . ;m15g to be learnt. The weighting factor wðA � P;mÞ is

obtained according to the methodology described in Section 3.4.
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761 larly well-suited to pattern recognition, is also valid for
762 the interpretation of the resulting mass. With this for-
763 malism the most suitable solution will always be applied
764 in each different conflict management strategy. The ap-
765 plication of the proposed formalism to the case of par-
766 tially known labeling is under study.

767 Appendix A. Discounting vs. combination

768 This section is devoted to the detailed calculus al-
769 lowing to emphasize the link between the conflict man-
770 agement based on a discounting (case of not reliable
771 sources) and a management based on an adapted as-
772 signment of the conflicting mass by means of weighting
773 factors associated to each subset.
774 Let mj a belief mass function issued from an infor-
775 mation source Sj. The commonality function qj associ-
776 ated to mj is defined as

qjðAÞ ¼
X
A�B

mjðBÞ 8A � H: ðA:1Þ

778 Furthermore, the inverse M€oobius transform allows to
779 retrieve the mass functions from the commonality
780 function qj by means of the following equation:

mjðAÞ ¼
X
A�B

ð�1ÞjB�AjqjðBÞ 8A � H: ðA:2Þ

A.1. Results of the combination of discounted belief mass
functions

784 Let fm1; . . . ;mj; . . . ;mJg be a set of belief functions.
785 We denote maj;j the belief function mj discounted by a
786 coefficient aj. Then, the function maj;j can be written as
787 follows:

maj;jðAÞ ¼ ajmjðAÞ 8A � H;

maj;jðHÞ ¼ 1� aj þ ajmjðHÞ:
ðA:3Þ

789 The commonality function qaj;j, associated to maj;j,
790 can be written as

8A � H qaj;jðAÞ ¼
X
A�B

maj;jðBÞ

¼
X
A�B

B6¼H

ðajmjðBÞÞ þ 1� aj þ ajmjðHÞ

¼ aj

X
A�B

mjðBÞ þ 1� aj ðA:4Þ

¼ ajqjðAÞ þ 1� aj

qaj;jðAÞ ¼ ajðqjðAÞ � 1Þ þ 1:

A.2. Belief functions resulting from the combination

793One can express the combination of the J information
794sources by means of commonality functions. The result
795of this fusion is denoted qa and can be written as fol-
796lows:

qaðAÞ ¼

Ka � qa1;1ðAÞ � � � � � qaj;jðAÞ � � � � qaJ ;J ðAÞ
8A � H;

Ka �
QJ

j¼1 qaj;jðAÞ
8A � H;

8>><
>>:

ðA:5Þ
798where Ka is the normalization coefficient of the combi-
799nation. This coefficient is as follows:

Ka ¼
1

�
P

B�H
B6¼;

ð�1ÞjBjqaðBÞ:
ðA:6Þ

801The mass resulting from Dempster’s rule of combi-
802nation (normalized combination) can be written as fol-
803lows:

8A � H

maðAÞ ¼
1

�
P

B�H
B 6¼;

ð�1ÞjBjqaðBÞ

�
X
A�B

ð�1ÞjB�AjqaðBÞ

¼ 1

�
P

B�H
B 6¼;

ð�1ÞjBj
QJ

j¼1 qaj;jðBÞ

�
X
A�B

ð�1ÞjB�Aj YJ
j¼1

qaj;jðBÞ ðA:7Þ

maðAÞ ¼
P

A�Bð�1ÞjB�Aj QJ
j¼1½ajðqjðBÞ � 1Þ þ 1�

�
P

B�H
B 6¼;

ð�1ÞjBj
QJ

j¼1½ajðqjðBÞ � 1Þ þ 1�
:

A.3. Belief mass function resulting from the proposed rule
of combination

807Let mc be the belief function resulting from the pro-
808posed combination of the J belief functions mj. This one
809can be written as follows:

mcðAÞ ¼ m\ðAÞ þ wðA;mÞmð;Þ 8A � H; ðA:8Þ
811where m\ð�Þ is the mass resulting of the conjunctive
812combination and where wðA;mÞ, with m ¼ fm1; . . . ;mJg,
813is the weighting factor associated to the assignment of
814the conflicting mass mð;Þ to the subset A. This Eq. (A.8)
815can be written by means of the commonality function.
816Indeed, the result of the conjunctive combination can be
817written as
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m\ðAÞ ¼
X
A�B

ð�1ÞjB�Aj YJ
j¼1

qjðBÞ 8A � H: ðA:9Þ

819 The conflicting mass generated by this conjunctive
820 combination can be written as

mð;Þ ¼ 1þ
X
B�H
B 6¼;

ð�1ÞjBj
YJ
j¼1

qjðBÞ: ðA:10Þ

822 The resulting belief function of the proposed combi-
823 nation is defined 8A � H:

mcðAÞ ¼
X
A�B

ð�1ÞjB�Aj YJ
j¼1

qjðBÞ þ wðA;mÞ

� 1

2
666664

þ
X
B�H
B6¼;

ð � 1ÞjBj
YJ
j¼1

qjðBÞ

3
777775
: ðA:11Þ

825 Taking into account Eqs. (A.7) and (A.11), we obtain
826 the weighting factor values for the assignment of the
827 conflicting mass according to the discounting coeffi-
828 cients aj and the belief masses mj:

wðA;mÞ ¼ f

P
A�Bð�1ÞjB�Aj QJ

j¼1½ajðqjðBÞ � 1Þ þ 1�
�
P

B�H
B6¼;

ð�1ÞjBj
QJ

j¼1½ajðqjðBÞ � 1Þ þ 1�

2
66664

�
X
A�B

ð � 1ÞjB�Aj YJ
j¼1

qjðBÞ

3
77775

ðA:12Þ

830 with

f ¼ 1

1þ
P

B�H
B6¼;

ð�1ÞjBj
QJ

j¼1 qjðBÞ
: ðA:13Þ

832

833 References

834 [1] M. Abidi, R. Gonzales (Eds.), Data Fusion in Robotics and

835 Machine Intelligence, Academic Press, New York, 1992.

836 [2] D. Dubois, H. Prade, Combination of fuzzy information in the

837 framework of possibility theory, Data Fusion in Robotics and

838 Machine Intelligence (1991) 481–505.

839 [3] S. Deveugh�eele, B. Dubuisson, Adaptative aggregation: decom-

840 posing before combining, in: Proceedings of the 4th IEEE

841 International Conference on Fuzzy Systems (FUZZ-IEEE’95),

842 Yokohama, 1995, pp. 1589–1596.

843[4] H. Li, S. Munjanath, S. Mitra, Multisensor image fusion using the

844wavelet transform, Graphical Models and Image Processing 57 (3)

845(1995) 235–245.

846[5] J. Desachy, L. Roux, E. Zahzah, Numeric and symbolic data

847fusion: a soft computing approach to remote sensing images

848analysis, Pattern Recognition Letters 17 (1996) 1361–1378.

849[6] S.L. H�eegarat-Mascle, I. Bloch, D. Vidal-Madjar, Application of

850Dempster–Shafer evidence theory to unsupervised classification in

851multisource remote sensing, IEEE Transactions on Geoscience

852and Remote Sensing 35 (4) (1997) 1018–1032.

853[7] S.L. H�eegarat-Mascle, I. Bloch, D. Vidal-Madjar, Introduction of

854neighborhood information in evidence theory and application to

855data fusion of radar and optical images with partial cloud cover,

856Pattern Recognition 34 (1998) 1811–1823.

857[8] L. Cholvy, About merged information, in: D. Dubois, H. Prade

858(Eds.), Handbook of Defeasible Reasoning and Uncertainty

859Management Systems, vol. 3, Kluwer Academic Publishers,

860Dordrecht, 1998, pp. 233–263.

861[9] J. Gebhardt, R. Kruse, Parallel combination of information

862sources, in: D. Dubois, H. Prade (Eds.), Handbook of Defeasible

863Reasoning and Uncertainty Management Systems, vol. 3, Kluwer

864Academic Publishers, Dordrecht, 1998, pp. 393–439.

865[10] J. Bezdek, J. Keller, R. Krishnapuram, N.R. Pal, Fuzzy models

866and algorithms for pattern recognition and image processing, in:

867H. Zimmermann (Ed.), The Handbook of Fuzzy Sets Series,

868Kluwer Academic Publishers, Dordrecht, 1999.

869[11] L. Fouque, A. Appriou, An evidential Markovian model for data

870fusion and unsupervised image classification, in: Proceedings of

871the Third International Conference on Information Fusion

872(FUSION 2000), Paris, France, 2000, pp. TuB425–TuB432.

873[12] A. Appriou, Multisensor signal processing in the framework of the

874theory of evidence, in: Application of Mathematical Signal

875Processing Techniques to Mission Systems, Research and Tech-

876nology Organization, Lecture Series, vol. 216, 1999, pp. (5-1)–(5-

87731).

878[13] C. Pohl, J. van Genderen, Multisensor image fusion in remote

879sensing: concepts, methods and applications, International Jour-

880nal of Remote Sensing 19 (5) (1998) 823–854.

881[14] I. Bloch, Some aspects of Dempster–Shafer evidence theory for

882classification of multi-modality medical images taking partial

883volume effect into account, Pattern Recognition Letters 17 (1996)

884905–919.

885[15] E. Lefevre, P. Vannoorenberghe, O. Colot, About the use of

886Dempter–Shafer theory for color image segmentation, in: First

887International Conference on Color in Graphics and Image

888Processing (CGIP’2000), 2000, pp. 164–169.

889[16] T. Denoeux, Analysis of evidence-theory decision rules for pattern

890classification, Pattern Recognition 30 (7) (1997) 1095–1107.

891[17] L.M. Zouhal, T. Denoeux, An evidence-theoretic K-NN rule with

892parameter optimization, IEEE Transactions on Systems, Man and

893Cybernetics – Part C 28 (2) (1998) 263–271.

894[18] T. Denoeux, A neural network classifier based on Demspter–

895Shafer theory, IEEE Transactions on Systems, Man and Cyber-

896netics Part A 30 (2) (2000) 131–150.

897[19] Y. Bar-Shalom, X.R. Li, Multitarget-Multisensor Tracking:

898Principles and Techniques, YBS Publishing, Storrs, CT, 1995.

899[20] L. Zadeh, A simple view of the Dempster–Shafer theory of

900evidence and its implication for the rule of combination, AI

901Magazine 7 (1986) 85–90.

902[21] R.R. Yager, On the Dempster–Shafer framework and new

903combination rules, Information Sciences 41 (1987) 93–138.

904[22] D. Dubois, H. Prade, Representation and combination of

905uncertainty with belief functions and possibility measures, Com-

906putational Intelligence 4 (1998) 244–264.

907[23] P. Smets, The combination of evidence in the transferable belief

908model, IEEE Transactions on Pattern Analysis and Machine

909Intelligence 12 (5) (1990) 447–458.

E. Lefevre et al. / Information Fusion xxx (2002) xxx–xxx 13

INFFUS 51

DISK / 8/4/02

No. of pages: 14

DTD 4.3.1/ SPS-N
ARTICLE IN PRESS



UNCORRECTED
PROOF

910 [24] C.K. Murphy, Combining belief functions when evidence con-

911 flicts, Decision Support Systems 29 (2000) 1–9.

912 [25] A. Dempster, Upper and lower probabilities induced by multi-

913 valued mapping, Annals of Mathematical Statistics AMS-38

914 (1967) 325–339.

915 [26] G. Shafer, A Mathematical Theory of Evidence, Princeton

916 University Press, Princeton, NJ, 1976.

917 [27] P. Smets, What is Dempster–Shafer’s model? in: R. Yager, M.

918 Fedrizzi, J. Kacprzyk (Eds.), Advances in the Dempster–Shafer

919 Theory of Evidence, Wiley, New York, 1994, pp. 5–34.

920 [28] P. Smets, R. Kennes, The transferable belief model, Artificial

921 Intelligence 66 (2) (1994) 191–234.

922 [29] A. Appriou, Probabilit�ees et incertitude en fusion de donn�eees

923 multi-senseurs, Revue Scientifique et Technique de la D�eefense 11

924 (1997) 27–40.

925 [30] P. Smets, Belief functions: the disjunctive rule of combination and

926 the generalized Bayesian theorem, International Journal of

927 Approximate Reasoning 9 (1993) 1–35.

928 [31] E. Lefevre, P. Vannoorenberghe, O. Colot, Using information

929 criteria in Dempster–Shafer’s basic belief assignment, in: Proceed-

930 ing of Fuzz’ieee 99, 1999, pp. 173–178.

931 [32] P. Walley, S. Moral, Upper probabilities based only on the

932 likelihood function, Journal of Royal Statistical Society, Series B

933 61 (Part 4) (1991) 831–847.

934 [33] T. Denoeux, A K-nearest neighbour classification rule based on

935 Dempster–Shafer theory, IEEE Transactions on Systems, Man

936 and Cybernetics 25 (5) (1995) 804–813.

937 [34] T. Denoeux, L.M. Zouhal, Handling possibilistic labels in pattern

938 classification using evidential reasoning, Fuzzy Sets and Systems

939 122 (3) (2001) 47–62.

940 [35] F. Voorbraak, On the justification of Dempster’s rule of combi-

941 nations, Artificial Intelligence 48 (1991) 171–197.

942 [36] F. Klawonn, E. Schwecke, On the axiomatic justification of

943 Dempster’s rule combination, International Journal of Intelligent

944 Systems 7 (1992) 469–478.

945 [37] D. Dubois, H. Prade, On the unicity of Dempster rule of

946 combination, International Journal of Intelligent System 1 (1986)

947 133–142.

948 [38] P. Quinio, T. Matsuyama, Random closed sets: a unified approach

949 to the representation of imprecision and uncertainty, in: P. Siegel,

950R. Kruse (Eds.), Symbolic and Quantitative Approaches to

951Uncertainty (ECSQARU), Springer, Marseille, France, 1991,

952pp. 282–286.

953[39] P. Smets, Resolving misunderstandings about belief functions,

954International Journal of Approximate Reasoning 6 (1992) 321–

955344.

956[40] B. Yaghlane, P. Smets, K. Mellouli, Independence and non-

957interactivity in the transferable belief model, in: F. Matus, M.

958Studeny (Eds.), Workshop on Conditional Independence Struc-

959tures and Graphical Models, Toronto, Canada, 1999, pp. 4–5.

960[41] B. Yaghlane, P. Smets, K. Mellouli, Independence concepts for

961belief functions, in: 8th International Conference Information

962Processing and Management of Uncertainty in Knowledge-based

963Systems (IPMU), vol. 1, 2000, pp. 357–364.

964[42] E. Lefevre, O. Colot, P. Vannoorenberghe, D. de Brucq, Contri-

965bution des mesures d’information �aa la mod�eelisation cr�eedibiliste de

966connaissances, Revue Traitement du Signal 17 (2) (2000) 87–97.

967[43] S. Fabre, A. Appriou, X. Briottet, Presentation and description of

968two classification methods using data fusion based on sensor

969management, Information Fusion 2 (2000) 49–71.

970[44] C. Roy�eere, D. Gruyer, V. Cherfaoui, Data association with belief

971theory, in: Third International Conference on Information Fusion

972(FUSION’2000), 2000, pp. TuD23–TuD29.

973[45] Ph. Smets, The alpha-junctions: the commutative combination

974operators applicable to belief functions, in: D. Gabbay, K. Kruse,

975A. Nonengart, H.J. Ohlbach (Eds.), Qualitative and Quantitative

976Practical Reasoning, Springer, Berlin, 1997, pp. 131–153.

977[46] E. Lefevre, O. Colot, P. Vannoorenberghe, D. de Brucq, A generic

978framework for resolving the conflict in the combination of belief

979structures, in: Third International Conference on Information

980Fusion (FUSION’2000), 2000, pp. MOD411–MOD418.

981[47] P. Smets, Constructing the pignistic probability function in a

982context of uncertainty, in: M. Henrion, R.D. Schachter, L. Kanal,

983F. Lemmer (Eds.), Uncertainty in Artificial Intelligence, vol. 5,

984North-Holland, Amsterdam, 1990, pp. 29–40.

985[48] T. Denoeux, An evidence-theoric neural network classifier, IEEE

986International Conference on Systems, Man and Cybernetics 3

987(1995) 712–717.

14 E. Lefevre et al. / Information Fusion xxx (2002) xxx–xxx

INFFUS 51

DISK / 8/4/02

No. of pages: 14

DTD 4.3.1/ SPS-N
ARTICLE IN PRESS


