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Abstract. In this paper, we propose a credal EM (CEM) approach for
partially supervised learning. The uncertainty is represented by belief
functions as understood in the transferable belief model (TBM). This
model relies on a non probabilistic formalism for representing and ma-
nipulating imprecise and uncertain information. We show how the EM
algorithm can be applied within the TBM framework when applied for
the classification of objects and when the learning set is imprecise (the
actual class of each object is only known as belonging to a subset of
classes), and/or uncertain (the knowledge about the actual class is rep-
resented by a probability function or by a belief function).
Keywords Learning, belief functions, EM, transferable belief model

1 Introduction

Supervised learning consists in assigning an input pattern x to a class, given a
learning set L composed of N patterns xi with known classification. Let Ω =
{ω1, ω2, . . . , ωK} be the set of K possible classes. Each pattern in L is represented
by a p-dimensional feature vector xi and its corresponding class label yi. When
the model generating the data is known, the classical methods of discriminant
analysis (DA) permits the estimation of the parameters of the model.

Still these methods assumed in practice that the actual class yi of each case
in the learning set is well known. Instead suppose the data of the learning set
are only partially observed, i.e., the actual class of a given object is only known
to be one of those in a given subset C of Ω. Classical methods for parametric
learning encounter then serious problems. One of the solution was based on the
EM algorithm (Dempster, Laird, & Rubin, 1977; McLaclan & Krishnan, 1997).

Parametric learning requires a model of the generation of the data and an
algorithm for estimating the parameters of this model using the available in-
formation contained in the learning set. A major drawback of many parametric
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methods is their lack of flexibility when compared with nonparametric meth-
ods. However, this problem can be circumvented using mixture models which
combine much of the flexibility of nonparametric methods with certain of the
analytic advantages of parametric methods. In this approach, we assume that
the data X = {x1, . . . , xN} are generated independently from a mixture density
model which probability density function (pdf) is given by:

f(xi; yi = ωk, θ) =
Gk∑
g=1

πkgfkg(xi; αkg) (1)

where Gk is the number of components in the mixture for the cases in class ωk,
πkg are the mixing proportions, fkg denotes a component, i.e. a probability dis-
tribution function parametrized by αkg, and θ = {(πkg, αkg) : g = 1, . . . , Gk; k =
1, . . . , K} are the model parameters to be estimated. For mixture of Gaussian
pdfs, the function fkg(xi;αkg) is a Gaussian pdf and αkg is a set of parame-
ters αkg = (µkg, Σkg) where µkg is the mean and Σkg the variance-covariance
matrix of the Gaussian pdf fkg.

Generally, the maximum likelihood estimation of the parameters of this
model cannot be obtained analytically, but learning θ could be easily achieved
if the particular component fkg responsible for the existence of each observation
xi was known. In reality, this ideal situation is hardly encountered.

Several real world contexts can be described.

1. The precise teacher case. For each learning case, we know the actual
class to which it belongs. The missing information is the g value for each
case. The classical approach to solve this problem is the EM algorithm.

2. The imprecise teacher case. For each learning case, we only know that the
actual class belongs to a subset of Ω. The missing information is the k and
the g values for each case, where k is constrained to a subset of 1, . . . , K.
The EM algorithm can be extended to such a case (Hastie & Tibshirani,
1996; Ambroise & Govaert, 2000).

3. The precise and uncertain teacher case. For each learning case, we only
have some beliefs about what is the actual class to which the case belongs.
The uncertainty is represented by a probability function on Ω. The uncer-
tainty concerns the k value, and the g values are still completely unknown.

4. The imprecise and uncertain teacher case. For each learning case, we
only have some beliefs about what is the actual class to which the case
belongs. The uncertainty is represented by a belief function on Ω. The un-
certainty and imprecision concern the k value, and the g values are still
completely unknown. The EM algorithm can be further extended to such a
case as done here.

In this paper, we consider the imprecise teacher case and the imprecise and
uncertain teacher case, the first case being covered by the second one. Uncer-
tainty is represented by belief functions as understood in the TBM (Smets &
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Kennes, 1994; Smets, 1998). We propose to use the advantages of both the EM
algorithm and the belief functions to learn the parameter of a TBM classifier.
This algorithm is called the ‘Credal EM’ (CEM) and its related classifier is called
the ‘CEM classifier’.

Previous work on comparing a TBM classifier with an EM based classifier was
performed in (Ambroise, Denoeux, Govaert, & Smets, 2001). Performance were
analogous, but the TBM classifier was much simpler to use. The TBM classifier
used in that comparison was based on non parametric methods as developed by
(Denœux, 1995; Zouhal & Denœux, 1998). Here the TBM is used for parameter
estimation and the final TBM classifier is based on a parametric method. This
paper is organized as follows. The basic concepts of belief functions theory are
briefly introduced in Section 2. The notion of likelihood is extended into the
TBM in Section 3. The principle of parameters estimation via the EM algorithm
is recalled in Section 4. The proposed algorithm is presented in Section 5. Finally,
Section 6 gives some experimental results using synthetic data.

2 Background materials on belief functions

Let Ω be a finite space, and let 2Ω be its power set. A belief function defined on
Ω can be mathematically defined by introducing a set function, called the basic
belief assignment (bba) mΩ : 2Ω → [0, 1] which satisfies:

∑

A⊆Ω

mΩ(A) = 1. (2)

Each subset A ⊆ Ω such as mΩ(A) > 0 is called a focal element of mΩ . Given
this bba, a belief function belΩ and a plausibility function plΩ can be defined,
respectively, as:

belΩ(A) =
∑

∅6=B⊆Ω

mΩ(B), ∀ A ⊆ Ω. (3)

plΩ(A) =
∑

A∩B 6=∅
mΩ(B), ∀ A ⊆ Ω. (4)

The three functions belΩ , plΩ and mΩ are in one-to-one correspondence and
represent three facets of the same piece of information. We can retrieve each
function from the others using the fast Möbius transform (Kennes, 1992). Let
mΩ

1 and mΩ
2 be two bbas defined on the same frame Ω. Suppose that the two

bbas are induced by two distinct pieces of evidence. Then the joint impact of the
two pieces of evidence can be expressed by the conjunctive rule of combination
which results in the bba:

mΩ
12(A) = (mΩ

1 ∩©mΩ
2 )(A) =

∑

B∩C=A

mΩ
1 (B).mΩ

2 (C). (5)
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In the TBM, we distinguish the credal level where beliefs are entertained (for-
malized, revised and combined) and the pignistic level used for decision making.
Based on rationality arguments developed in the TBM, Smets proposes to trans-
form mΩ into a probability function BetP on Ω (called the pignistic probability
function) defined for all ωk ∈ Ω as:

BetP (ωk) =
∑

A3ωk

mΩ(A)
|A|

1
1−mΩ(∅) (6)

where |A| denotes the cardinality of A ⊆ Ω and BetP (A) =
∑

ω∈A BetP (ω), ∀A ⊆
Ω. In this transformation, the mass of belief m(A) is distributed equally among
the elements of A (Smets & Kennes, 1994; Smets, 2005).

Let us suppose the two finite spaces X, the observation space, and Θ, the
unordered parameter space. The Generalized Bayesian Theorem (GBT), an ex-
tension of Bayes theorem within the TBM, consists in defining a belief function
on Θ given an observation x ⊆ X, the set of conditional bbas mX [θi] over X, one
for each θi ∈ Θ3 and a vacuous a priori on Θ. Given this set of bbas (which can
be associated to their related belief or plausibility functions), then for x ⊆ X
and ∀A ⊆ Θ, we have:

plΘ[x](A) = 1−
∏

θi∈A

(1− plX [θi](x)). (7)

3 Explaining the likelihood maximization within the
TBM

Suppose a random sample of a distribution with parameters θ ∈ Θ and let X =
{x1, . . . , xN : xi ∈ IRp} be the set of observations. In probability theory many
estimation procedures for θ are based on the maximization of the likelihood, i.e.
P IRp

(X|θ) considered as a function of θ. How do we generalize this procedure
within the TBM? We reconsider the issue.

For each θ ∈ Θ, we have a conditional belief function on IR, denoted mIR[θ].
We observe x ⊆ IR. This induce a bba on Θ by the application of the GBT.
So we get the bba mΘ[x]. How to estimate θ0, the actual value of Θ? We could
select the θ that maximizes BetPΘ[x], thus the most ‘probable’ value of Θ. This
last solution means finding the modal value of BetPΘ[x]. We feel this principle
fits with the idea underlying the maximum likelihood estimators.

So we must find the θ ∈ Θ such that BetPΘ[x](θ) ≥ BetPΘ[x](θi), ∀ θi ∈
Θ. This maximization seems hard to solve, but we can use theorem III.1. in
3 We use the next notational convention for the indices and [ ]: mD[u](A) denotes the

mass given to the subset A of the domain D by the conditional bba mD[u] defined
on D given u is accepted as true.
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(Delmotte & Smets, 2004) which states that the θ that maximizes BetPΘ[x] is
the same as the one that maximizes the plausibility function plΘ[x](θ), provided
the a priori belief on Θ is vacuous, as it is the case here.

Theorem 1. Given x ⊆ X and plX [θ](x) for all θ ∈ Θ, let plΘ[x] be the plau-
sibility function defined on Θ and computed by the GBT, and BetPΘ[x] be the
pignistic probability function constructed on Θ from plΘ[x], then:

BetPΘ[x](θi) > BetPΘ[x](θj) iff plΘ[θi](x) > plΘ[θj ](x). (8)

In the TBM, plΘ[x](θ) is equal to plX [θ](x). Furthermore when N i.i.d. data
xi, i = 1, . . . , N , are observed, we get plX

N

[θ](x1, ..., xN ) =
∏N

i=1 plX [θ](xi).
This last term is easy to compute and leads thus to applicable algorithms. Maxi-
mizing the likelihood over θ turns out to mean maximizing over θ the conditional
plausibilities of the data given θ.

4 Parameter estimation by EM algorithm

We introduce the classical EM approach to find the parameters of a mixture
models from a data set X = {x1, . . . , xN} made of cases which belong to a same
class. The aim is to estimate the posterior distribution of the variable y which
indicates the component of the mixture that generated xi taking into account
the available information L. For simplicity sake, we do not indicate the class
index k. For that estimation, we need to know πg, fg and αg for g = 1, . . . , G.
For their estimation, we use the EM algorithm to maximize according to θ the
log likelihood:

L(θ; X) = log(
N∏

i=1

f(xi; θ)) =
N∑

i=1

log(
G∑

g=1

πgfg(xi; αg)). (9)

In order to solve this problem, the idea is that if one had access to a hid-
den random variable z that indicates which data point was generated by which
component, then the maximization problem would decouple into a set of simple
maximizations. Using this indicator variable z, relation (9) can be written as
the next complete-data log likelihood function:

Lc(θ;X, z) =
N∑

i=1

G∑
g=1

zig log(πgfg(xi; αg)) (10)

where zig = 1 if the Gaussian pdf having generated the observation xi is fg, and
0 otherwise. Since z is unknown, Lc cannot be used directly, so we usually work
with its expectation denoted Q(θ|θl) where l is used as the iteration index. As
shown in (Dempster et al., 1977), L(θ; X) can be maximized by iterating the
following two steps:



VI

– E step: Q(θ|θl) = E[Lc(θ; X, z)|X, θl]
– M step: θl+1 = arg maxθ Q(θ|θl)

The E (Expectation) step computes the expected complete data log likelihood
and the M (Maximization) step finds the parameters that maximize that likeli-
hood. Q(θ|θl) can be rewritten as

Q(θ|θl) =
N∑

i=1

G∑
g=1

E[zig|X, θl] log(πgfg(xi; αg)) (11)

In a probabilistic framework, E[zig|X, θl] is nothing more than P (zig = 1|X, θl),
the posterior distribution easily computed from the observed data.

5 CEM : the credal solution

In this section, we introduce a credal EM approach for partially supervised learn-
ing. The imprecision or/and uncertainty on the observed labels are represented
by belief functions (cf. section 5.1). We consider the imprecise and uncertain
teacher case (section 5.2).

5.1 Partially observed labels

Thanks to its flexibility, a belief function can represent different forms of labels
including hard labels (HL), imprecise labels (IL), probabilistic labels (PrL), pos-
sibilistic (PoL) labels and credal labels (CrL). Table 1 illustrates an example of
the bbas that characterize the knowledge about the labels on a three-class frame.
Note that a possibility measure is known to be formally equivalent to a conso-
nant belief function, i.e., a belief function with nested focal elements (Denœux &
Zouhal, 2001). Unlabeled samples (UL) can be encoded using the vacuous belief

A ⊆ Ω HL IL PrL PoL CrL UL

{ω1} 0 0 0.2 0 .1 0
{ω2} 1 0 0.6 0 0 0

{ω1, ω2} 0 1 0 0 .2 0
{ω3} 0 0 0.2 0.7 .3 0

{ω1, ω3} 0 0 0 0.2 .3 0
{ω2, ω3} 0 0 0 0 0 0

Ω 0 0 0 0.1 .1 1

Table 1. Example of imprecise and uncertain labeling with belief functions
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function mv defined as mv(Ω) = 1. This show that handling the general case
based on belief functions covers all cases of imperfect teacher (imprecise and/or
uncertain). Of course, the TBM covers the HL, IL, PrL and CrL cases. For the
PoL, the CEM algorithm presented here has to be adapted as we use the GBT
and other combination rules that differ from their possibilistic counterparts.

5.2 The imprecise and uncertain teacher case

Let Ω = {ω1, . . . , ωK} be a set of K mutually exclusive classes4. Let L be a set
of N observed cases and called the learning set. For i = 1, . . . , N , let ci denotes
the i-th case. For case ci, we collect a feature vector xi taking values in IRp, and
a bba mΩ

i that represents all we know about the actual class yi ∈ Ω to which
case ci belongs. We then assume that the probability density function (pdf) of
xi is given by the next mixture of pdfs :

f(xi; yi = ωk, θk) =
Gk∑
g=1

πkgfkg(xi; αkg) (12)

where fkg is the p-dimensional Gaussian pdf with parameters αkg = (µkg,Σkg).

Let the available data be {(x1,m
Ω
1 )..., (xN ,mΩ

N )} where X = (x1, ..., xN )
is an i.i.d sample. Let Y = (y1, ..., yN ) be the unobserved labels and mΩ =
(mΩ

1 , . . . , mΩ
N ) are the bbas representing our beliefs about the actual values of

the yi’s. For the estimation of the parameters θ = ({αkg : j = 1, . . . Gk, k =
1, . . . , K}, Y ), we use the EM algorithm to maximize the log likelihood given
by:

L(θ;L) = log(
N∏

i=1

f(xi; yi = ωk, θk)) =
N∑

i=1

log(
Gk∑
g=1

πkgfkg(xi;αkg)). (13)

We can rephrase the relation by considering all the Gaussian pdfs. There are
G =

∑K
k=1 Gk Gaussian pdfs. Let Jk be the indexes in the new ordering of the

components of the class ωk. So Jk = {j :
∑k−1

ν=1 Gν < j ≤ ∑k
ν=1 Gν} where∑0

ν=1 Gν = 0. This reindexing is analogous to a refinement R of the classes in
Ω = {ωk : k = 1, . . . , K} into a set of new ‘classes’ Ω∗ = {ω∗j : j = 1, . . . , G}
where ωk is mapped onto {ω∗j : j ∈ Jk}. The bba mΩ

i can be refined on Ω∗ as
mΩ∗

i where

mΩ∗
i (R(A)) = mΩ

i (A) ∀A ⊆ Ω (14)
= 0 otherwise

4 In the TBM, we do not require Ω to be exhaustive, but one could add this require-
ment innocuously.
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For each case ci, we must find out which of the G pdfs generated their xi data.
So, equation (13) can be written as:

L(θ;L) =
N∑

i=1

log(
G∑

j=1

πjfj(xi; αj)) (15)

where the sum of the πj taken on the j indexes corresponding to the possible
classes of ci must add to 1, all others being 0.

We reconsider the EM algorithm when the teacher is imperfect. We need for
each case ci the plausibility of xi given the bba mΩ∗

i about its class in Ω∗. If the
actual class is ω∗j , then plIR

p

[ω∗j ](xi) is given by fj(xi, αj). If xi is a singleton (as
usual and assumed hereafter) then plIR

p

[ω∗j ](xi) = fj(xi, αj)dx where we put dx
to mention that a plausibility is a set function whereas f itself is a density. This
dx term will cancel when normalizing. Let A ⊆ Ω∗, then from the disjunctive
rule of combination associated to the GBT we get:

plIR
p

[A](xi) = 1−
∏

j:ω∗j∈A

(1− plIR
p

[ω∗j ](xi)). (16)

We then assess the bba on Ω∗ given θl and xi. From the GBT, we get
mΩ∗ [xi, θ

l]. We combine this bba with the prior bba given by mΩ∗
i by the con-

junctive combination rule. The term to maximize is then:

Q(θ|θl) =
N∑

i=1

∑

A⊆Ω∗
(mΩ∗ [xi, θ

l] ∩©mΩ∗
i )(A) log(plIR

p

[A](xi)) (17)

where plIR
p

[A](xi) is given by relation (16).

6 Simulations results

In this section, we propose to illustrate the performance of the CEM algorithm
described in the previous sections using two learning tasks.

6.1 Learning task 1: Isosceles triangles

In this task, we have three classes: Ω = {ω1, ω2, ω3} and two-dimensional data. In
each class, there are 2 components (Gk = 2, k = 1, 2, 3). For a given subset, each
vector x is generated from a Gaussian f(x|ωg) ∼ N (µg, Σg) where Σg = σI.
The parameters for the 6 pdfs are presented in table 2. The pdf corresponds to
3 largely spread data (σ = 2) located at the 3 corners of an isosceles triangle,
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and to 3 clustered data (σ = 0.5) located at the 3 corners of another isosceles
triangle. The pair of pdf corresponding to one class are thus located at one corner
and half way on the line between the other 2 corners. In figure 1, we illustrate an
example of such a learning set with its respective isosceles triangles (fine lines).

ω1(+) ω1(+) ω2(×) ω2(×) ω3(·) ω3(·)
subset1 subset2 subset1 subset2 subset1 subset2

µa 10 17.5 15 15 20 12.5
µb 10 14.3 18.6 10 10 14.3
σ 2 0.5 2 0.5 2 0.5

IL 50 ω1 25 ω1, ω2 50 ω2 25 ω1, ω2 50 ω3 25 ω1, ω3

cases 25 ω1, ω3 25 ω2, ω3 25 ω2, ω3

ma 9.13 17.54 15.60 14.92 20.36 12.42
mb 10.35 14.32 18.95 10.12 9.86 14.35
s 2.57 0.38 1.85 0.37 3.24 0.35
r 0.185 0.152 0.178 0.148 0.179 0.154

Table 2. Parameters of the learning set for task 1 with imprecise labels (IL) and the
estimations obtained with the CEM for one run.

0 5 10 15 20 25 30
0

5

10

15

20

25
Learning data with partially observed labels

1

2

3

4

5

6

class ω
1

class ω
2

class ω
3

Fig. 1. Learning set in the feature space

We generate a sample of 50 cases from each of the 6 pdfs. Labels for each
case can be of two types, either imprecise (IL) or credal (CrL). In the IL case,
the labels for the 50 cases from the largely spread data (those at the corners)
are precise. The other 50 cases are randomly split into two groups of 25 cases.
Their labels are imprecise and made of 2 classes, the actual class being one of
them. So for the 50 cases in subset 2 of class ω1, 25 are labeled {ω1, ω2} and
25 are labeled {ω1, ω3}. In the CrL case, the labels are subsets of Ω randomly



X

generated and each one receives a random mass. We thus generate imprecise and
uncertain learning sets as they can be encountered in real world applications.

We run 10 simulations. For each of them, we generate the labels for the IL
and CrL cases. In figure 1, we present the data for one simulation. The bold
line triangle illustrates the result of the application of the CEM for the IL case.
As can be seen, the means (the corners of the triangles) are well located. The
estimated parameters are listed at the bottom of table 2. On the IL data, we
apply both a classical EM algorithm and the CEM. On the CrL, we apply only
the CEM algorithm as the classical does not seem fitted for such type of data.
In table 3, we present the Percentage of Correct Classification (PCC) obtained
for each of the 10 independent training sets. Each method produces very similar

Triangles 1 2 3 4 5 6 7 8 9 10 mean std

EM 85.3 84.3 86.3 88.0 86.7 87.0 83.3 85.7 90.7 88.0 86.5 2.1
CEM IL 86.3 85.3 88.0 90.3 88.0 87.3 84.0 88.0 91.0 88.0 87.6 2.0
CEM CrL 87.0 86.6 87.6 90.0 87.6 88.0 85.3 88.3 91.3 86.7 87.8 1.7

Table 3. Percentage of correct classification for classical EM and CEM algorithms.

results but only the CEM algorithm is able to use credal labels, a much more
flexible information than the one encountered in the IL case.

6.2 Learning task 2: Qualitative example

This learning set is drawn using three bi-dimensional Gaussian classes of stan-
dard deviation 1.5 respectively centered on (3, 0), (0, 5) and (0, 0). Figure 2
illustrates this learning task associated to the decision regions computed using
parameters of the CEM algorithm learnt from credal labels (CrL). A very im-
portant, but classical feature using EM and mixture models algorithms, is the
ability to cope with unlabeled samples. The first intuition is that these unlabeled
data don’t bring any information for learning the parameters of the generated
data. Contrary to this idea, we can show on this illustrative example that unla-
beled data give clearly a more precise idea of the real distributions. To highlight
this issue, two training sets were considered: a training set (set 1) which contains
all the data except that we randomly remove 40 cases (80%) of class ω2, and
a training set (set 2) with all the data (150 cases). In this second learning set,
we replace the credal labels generated for the 40 previous cases with vacuous
belief functions (UL) before applying the CEM classifier. Table 4 shows the es-
timated parameters for these two learning tasks. Additionally, estimated means
are illustrated with gray levels disks in figure 2. This last capacity makes CEM
a very suitable algorithm for cluster analysis which is under study. In all these
simulations, the estimation of the number of components Gk is a difficult model
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Fig. 2. Maximum pignistic probabilities as grey level values

ω1(+) ω1(+) ω2(×) ω2(×) ω3(·) ω3(·)
µa µb µa µb µa µb

Real values 3.00 0.00 0.00 0.00 0.00 5.00
Training set 1 3.52 -0.10 0.96 -0.45 -0.00 5.18
Training set 2 2.99 -0.19 -0.07 -0.40 -0.00 5.14

Table 4. Estimated parameters of the learning task 2.

choice problem for which there is a number of possible solutions (Figueiredo &
Jain, 2002). This problem is left for future works.

7 Conclusion

In this paper, a credal approach for partially supervised learning has been pre-
sented. The proposed methodology uses a variant of EM algorithm to estimate
parameters of mixture models and can cope with learning set where the knowl-
edge about the actual class is represented by a belief function. Several simulations
have proved the good performance of this CEM algorithm compared to classical
EM estimation in learning mixture of Gaussians.

Numerous applications of this approach can be mentioned. As example, let us
consider Bayesian networks which use EM algorithms to estimate parameters of
unknown distributions. Using CEM algorithm can be a good alternative for belief
networks. Future work is concerned with model selection issue which includes
the choice of the number of components, shape of each component. . . Another
important issue is the detection of outliers which can be solved by adding an
extra component (uniform for example) in the mixture.
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